S5M8767A

Power Management IC for Mobile Applications

Revision 0.10 December 2011

si - plaza / Jeff_cui at 14:14,2011.12.13

Data Sheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2011 Samsung Electronics Co., Ltd. All rights reserved.

Important Notice

Samsung Electronics Co. Ltd. ("Samsung") reserves the right to make changes to the information in this publication at any time without prior notice. All information provided is for reference purpose only. Samsung assumes no responsibility for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

This publication on its own does not convey any license, either express or implied, relating to any Samsung and/or third-party products, under the intellectual property rights of Samsung and/or any third parties.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

Customers are responsible for their own products and applications. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could reasonably be expected to create a situation where personal injury or death may occur. Customers acknowledge and agree that they are solely responsible to meet all other legal and regulatory requirements regarding their applications using Samsung products notwithstanding

Copyright © 2011 Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. San #24 Nongseo-Dong, Giheung-Gu Yongin-City, Gyeonggi-Do, Korea 446-711

Contact Us: <u>wonseok.kang@samsung.com</u> TEL: (82)-(31)-209-9287 FAX: (82)-(31)-209-3131

Home Page: http://www.samsungsemi.com

any information provided in this publication. Customer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim (including but not limited to personal injury or death) that may be associated with such unintended, unauthorized and/or illegal use.

WARNING No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung. This publication is intended for use by designated recipients only. This publication contains confidential information (including trade secrets) of Samsung protected by Competition Law, Trade Secrets Protection Act and other related laws, and therefore may not be, in part or in whole, directly or indirectly publicized, distributed, photocopied or used (including in a posting on the Internet where unspecified access is possible) by any unauthorized third party. Samsung reserves its right to take any and all measures both in equity and law available to it and claim full damages against any party that misappropriates Samsung's trade secrets and/or confidential information.

警告 本文件仅向经韩国三星电子株式会社授权的人员提供, 其内容含有商业秘密保护相关法规规定并受其保护的三星电 子株式会社商业秘密,任何直接或间接非法向第三人披露、 传播、复制或允许第三人使用该文件全部或部分内容的行为 (包括在互联网等公开媒介刊登该商业秘密而可能导致不特 定第三人获取相关信息的行为)皆为法律严格禁止。此等违 法行为一经发现,三星电子株式会社有权根据相关法规对其 采取法律措施,包括但不限于提出损害赔偿请求。

Trademarks

All brand names, trademarks and registered trademarks belong to their respective owners.

- Exynos, Exynos4210, FlexOneNAND, and OneNAND are trademarks of Samsung Electronics.
- ARM, Jazelle, TrustZone, and Thumb are registered trademarks of ARM Limited. Cortex, ETM, ETB, Coresight, ISA, and Neon are trademarks of ARM Limited.
- Java is a trademark of Sun Microsystems, Inc.
- SD is a registered trademark of Toshiba Corporation.
- MMC and eMMC are trademarks of MultiMediaCard Association.
- JTAG is a registered trademark of JTAG Technologies, Inc.
- Synopsys is a registered trademark of Synopsys, Inc.
- I2S is a trademark of Phillips Electronics.
- I²C is a trademark of Phillips Semiconductor Corp.
- MIPI and Slimbus are registered trademarks of the Mobile Industry Processor Interface (MIPI) Alliance.

All other trademarks used in this publication are the property of their respective owners.

Chip Handling Guide

Precaution against Electrostatic Discharge

When handling semiconductor devices, be sure that the environment is protected against static electricity.

- 1. Operators should wear anti-static clothing and use earth band.
- 2. All objects that come in direct contact with devices should be made of materials that do not produce static electricity that would cause damage.
- 3. Equipment and work table must be earthed.
- 4. Ionizer is recommended to remove electron charge.

Contamination

Be sure to use semiconductor products in the environment that may not be exposed to dust or dirt adhesion.

Temperature/Humidity

Semiconductor devices are sensitive to environment temperature and humidity. High temperature or humidity may deteriorate semiconductor device's characteristics. Therefore avoid storage or use in such conditions.

Mechanical Shock

Care should be exercised not to apply excessive mechanical shock or force on semiconductor device.

Chemical

Do not expose semiconductor device to chemical because reaction to chemical may cause deterioration of device characteristics.

Light Protection

In case of non-EMC (Epoxy Molding Compound) package, do not expose semiconductor IC to strong light. It may cause device's malfunction. (But, some special products which utilize the light or have security function are excepted from this guide)

Radioactive, Cosmic and X-ray

Semiconductor devices can be influenced by radioactive, cosmic ray or X-ray. Radioactive, cosmic and X-ray may cause soft error during device operation. Therefore semiconductor devices must be shielded under environment that may be exposed to radioactive, cosmic ray or X-ray.

EMS (Electromagnetic Susceptibility)

Note that semiconductor device's characteristics may be affected by strong electromagnetic wave or magnetic field during operation under insufficient PCB circuit design for EMS.

SAMSUNG ELECTRONICS

Revision History

Revision No.	Date	Description	Author(s)
0.00	Nov. 9, 2011	Released Initial preliminary specification	WS Kang
0.10	Dec.5, 2011	 Ordering information is changed. LDO4 is modified default on and added to power sequence. Buck9 default voltage is changed. Figure3 System Connection Diagram is modified. Description of Manual reset function is modified. Buck Remote Sense description is updated. Mode control description of LDO4/18/23 is added. Table3 is modified. Slave address of PM section is updated. 	WS Kang

Table of Contents

1 PRODUCT OVERVIEW	11
1.1 Introduction	
1.2 Features	
1.2.1 Regulators	12
1.2.2 Supplementary Functions	13
1.2.3 Applications	13
1.2.4 Ordering Information	
1.3 Block Diagram	
1.4 Ball Configuration (Top View)	
1.5 Ball Description	
1.6 Absolute Maximum Ratings	
1.7 Recommended Operating Condition	22
2 ELECTRICAL SPECIFICATIONS	23
2.1 General and Logic	
2.2 Buck Converters	
2.2.1 Buck Converter 1, 3, 5, 6, 7, 8, 9	
2.2.2 Buck Converter 2 & 4	
2.3 LDOs	
2.3.1 LDO (P) 4, 5, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 26, 27, 28 (150 mA, PMOS)	
2.3.2 LDO (P) 3, 10, 18, 23, 24, 25 (300 mA, PMOS)	
2.3.3 LDO (P) 9 (400 mA, PMOS) 2.3.4 LDO (N) 1, 6, 7, 15 (150 mA, NMOS)	 20
2.3.4 LDO (N) 1, 0, 7, 13 (130 MA, NMOS)	
2.3.5 LDO (N) 8 (300 mA, NMOS)	
2.4 Backup Coin Battery Charger	
2.5 Clock and RTC	
3 FUNCTIONAL DESCRIPTION	49
3.1 Power Sequence	49
3.1.1 Power On Sequence	49
3.1.2 MR, SMPL, WTSR, RTC, POR, IRQB	
3.2 UVLO, Reference Voltage, Thermal Shutdown	
3.3 Regulator	
3.3.1 Buck Converters	
3.3.2 LDOs	
3.4 Backup Coin Battery 3.4.1 Backup Coin Battery	
4 DIGITAL INTERFACE (I2C)	
4.1 Slave Address	
4.2 Register Address	
4.2.1 I2C Interface	
4.2.2 Control Interface using SCL (Clock) and SDA (Data)	
4.2.3 I2C Interface Timing Diagram	

5 REGISTER DESCRIPTION	75
5.1 Power Management	
5.1.1 Register Map Summary	
5.1.2 Bit Map Summary	79
5.2 RTC	
5.2.1 Register Map Summary	
5.2.2 Bit Map Summary	114
6 APPLICATION CIRCUIT	
6.1 Package Dimension	128

List of Figures

Figure Number

Title

Figure 1	S5M8767A Package Top and Bottom Views	11
Figure 2	Block Diagram of S5M8767A	
Figure 3	System Connection Diagram	
Figure 4	Ball Configuration	
Figure 5	Power On Sequence	
Figure 6	Power on/off Sequence	
Figure 7	Sleep and Wakeup by PWREN	
Figure 8	Manual Reset Sequence Timing Diagram	
Figure 9	SMPL Timing Diagram	
Figure 10	WTSR Timing Diagram	
Figure 11	Power On Debounce and Interrupt	
Figure 12	Buck Converter Block Diagram	
Figure 13	Power On Sequence in Buck Converter	
Figure 14	Buck2/3/4 DVS Control	
Figure 15	Remote Sense Pin Connection	
Figure 16	SW Node Voltage and Inductor Current Waveforms in Dual Phase Buck Converter	61
Figure 17	Mode Transition Waveforms in Buck 5	61
Figure 18	PLDO (Low-Dropout Regulator having a PMOS Power Transistor)	64
Figure 19	Application Example	65
Figure 20	NLDO (Low-Dropout Regulator having a NMOS Power Transistor)	66
Figure 21	Mode Control Waveforms in LDO4, LDO18 and LDO 23	67
Figure 22	Backup Coin Battery Charging Graph	69
Figure 23	Single Byte Write Mode	71
Figure 24	Multi Bytes Write Mode	71
Figure 25	Single Byte Read Mode	72
Figure 26	Multi Bytes Read Mode	72
Figure 27	I2C Control Interface Timing Diagram	73
Figure 28	Typical Application Circuit	
Figure 29	Package Dimension	128

List of Tables

Table Number	Title	Page Number
Number		Number
	List of Recommended Inductors	
Table 2	List of Recommended Capacitors	63
	Information of Power Supply on Each LDO	
Table 4	I2C Electrical Specification	74
	Voltage Table for BUCK 2/3/4	
	Voltage Table for BUCK1/5/6	
	Voltage Table for BUCK7/8/9	

si - plaza / Jeff_cui at 14:14,2011.12.13

List of Conventions

Register RW Access Type Conventions

Туре	Definition	Description
R	Read Only	The application has permission to read the Register field. Writes to read-only fields have no effect.
W	Write Only	The application has permission to write in the Register field.
RW	Read & Write	The application has permission to read and writes in the Register field. The application sets this field by writing 1'b1 and clears it by writing 1'b0.
RC	Read & Clear	If reading 0x01 to 0x03 registers, the information is automatically cleared.

Register Value Conventions

Description
Undefined bit
Undefined multiple bits
Undefined, but depends on the device or pin status
The value depends on the device
The value depends on the pin status

Reset Value Conventions

Expression	Description
0	
1	
х	

Warning: Some bits of control registers are driven by hardware or write only. As a result the indicated reset value and the read value after reset might be different.

1.1 Introduction

S5M8767A is an advanced Power Management IC (PMIC) designed for mobile applications. It is comprised of high efficient Buck converters including Dual-Phase Buck converters, various LDOs, and an RTC integrated into a 144-WFP (Wafer-level Fabricated Package), 5.0mm × 5.0mm package.

S5M8767A, coupled with Multi Core Samsung Application Processors (Exynos4212/4412/5250), is used in wide mobile applications such as smart phones and tablet PCs.

The Buck Converters in S5M8767A provide stable power to the ARM core/cache, internal logic, memory, camera processor, and sub-regulations. Three Buck Converters for high load capacity in Application Processor side also provide optimal power control using Dynamic Voltage Scaling (DVS) via I2C or GPIO interface between PMIC and Application Processor.

The various LDOs supply appropriate power to each I/O and functional block in an Application Processor and camera IC in set application. Applying independent LDO to each I/O block helps the CPU to support various types of devices. Each block can be turned on and turned off for power optimization. Other features include thermal regulation and internal timer function.

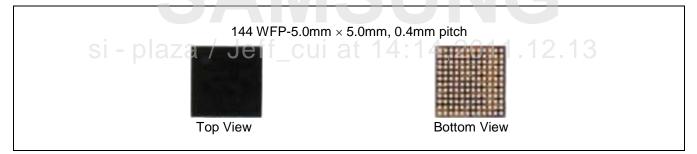


Figure 1 S5M8767A Package Top and Bottom Views

SAMSUNG ELECTRONICS

1.2 Features

The key features of S5M8767A include:

1.2.1 Regulators

- 9 High-Efficiency and programmable Buck Converters (2 Dual Phase Bucks)
 - Buck1 (VDD_MIF): 1.5 A (0.65 V to 2.225 V, 6.25mV step, default on 1.0 V)
 - Buck2 (VDD_ARM): 5.0 A, Eight Step DVS (0.6 V to 1.6 V, 6.25 mV step, default on 1.1 V)
 - Buck3 (VDD_INT): 2.5 A, Eight Step DVS (0.6 V to 1.6 V, 6.25 mV step, default on 1.0 V)
 - Buck4 (VDD_G3D): 5.0 A, Eight Step DVS (0.6 V to 1.6 V, 6.25 mV step, default on 1.0 V)
 - Buck5 (VDD_MEM): 2.0 A (0.65 V to 2.225 V, 6.25 mV step, default on 1.2 V), supports low power mode at sleep state
 - Buck6 (VDD_CAM_CORE): 1.5 A (0.65 V to 2.225 V, 6.25 mV step, default off 1.2 V)
 - Buck7 (VDD_H_LDO): 1.5 A (0.75 V to 3.0 V, 12.5 mV step, default on 2.0 V)
 - Buck8 (VDD_L_LDO): 1.5 A (0.75 V to 3.0 V, 12.5 mV step, default on 1.4 V)
 - Buck9 (VDD F_eMMC): 1.5 A (0.75 V to 3.3 V, 12.5 mV step, default off 2.85 V)
- 28 LDO Regulators (22 PMOS LDOs, 6 NMOS LDOs, N:NMOS type LDO, P:PMOS type LDO)
 - LDO1 (N): 150 mA (0.8 V to 2.375 V, 25 mV step, default on 1.0 V)
 - LDO2 (N): 450 mA (0.8 V to 2.375 V, 25 mV step, default on 1.2 V)
 - LDO3 (P): 300 mA (0.8 V to 3.95 V, 50 mV step, default on 1.8 V)
 - LDO4 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default on 1.8 V)
 - LDO5 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default on 1.8 V)
 - LDO6 (N): 150 mA (0.8 V to 2.375 V, 25 mV step, default on 1.0 V)
 - LDO7 (N): 150 mA (0.8 V to 2.375 V, 25 mV step, default on 1.0 V)
 - LDO8 (N): 300 mA (0.8V to 2.375 V, 25 mV step, default on 1.0 V)
 - LDO9 (P): 400 mA (0.8 V to 3.95 V, 50 mV step, default off 3.0 V)
 - LDO10 (P): 300 mA (0.8 V to 3.95 V, 50 mV step, default on 1.8 V)
 - LDO11 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default on 1.8 V)
 - LDO12 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default on 3.0 V)
 - LDO13 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default on 1.8 V)
 - LDO14 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default on 1.8 V)
 - LDO15 (N): 150 mA (0.8 V to 2.375 V, 25 mV step, default on 1.0 V)
 - LDO16 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default on 1.8 V)
 - LDO17 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default on 2.8 V)
 - LDO18 (P): 300 mA (0.8V to 3.95 V, 50 mV step, default off 2.8 V)
 - LDO19 (P): 150 mA (0.8V to 3.95 V, 50 mV step, default off 3.0 V)
 - LDO20 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default off 3.0 V)
 - LDO21 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default off 3.0 V)
 - LDO22 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default off 3.3 V)

SAMSUNG ELECTRONICS

- LDO23 (P): 300 mA (0.8 V to 3.95 V, 50 mV step, default off 2.8 V)
- LDO24 (P): 300 mA (0.8 V to 3.95 V, 50 mV step, default off 3.0 V)
- LDO25 (P): 300 mA (0.8 V to 3.95 V, 50 mV step, default off 1.2 V)
- LDO26 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default off 1.8 V)
- LDO27 (P): 150 mA (0.8 V to 3.95 V, 50mV step, default off 1.8 V)
- LDO28 (P): 150 mA (0.8 V to 3.95 V, 50 mV step, default off 1.8 V)

1.2.2 Supplementary Functions

- RTC with two alarms
- Three Buffered 32.768 kHz Outputs (for AP, CP, and B/T)
- One Back up battery charger
- Low-Battery Monitor and Reset Output
- Under Voltage Lock Out / Thermal Shutdown / BandGap Reference
- Power-on Sequence
- I2C Interface for Programming

1.2.3 Applications

- Smart Phones and Cellular Phones
- Portable Applications (Tablet PC and Wireless Handheld)

i - plaza / Jeff_cui at 14:14,2011.12.13

1.2.4 Ordering Information

Device	Package	Operating Temperature		
S5M8767A01-6030 (NOTE)	144 WFP – 5.0mm × 5.0mm (0.4mm pitch)	– 40°C to 85°C		

NOTE: Under Development

Warning: This device should be shorted together or the device should be placed in conductive foam during storage or handling to prevent electrostatic damage.

SAMSUNG ELECTRONICS

1.3 Block Diagram

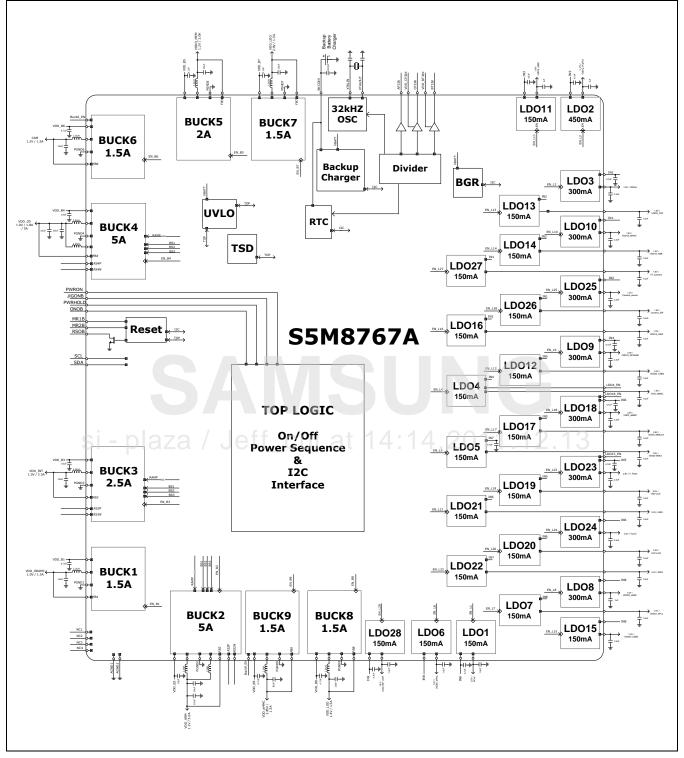


Figure 2 Block Diagram of S5M8767A

SAMSUNG ELECTRONICS

14

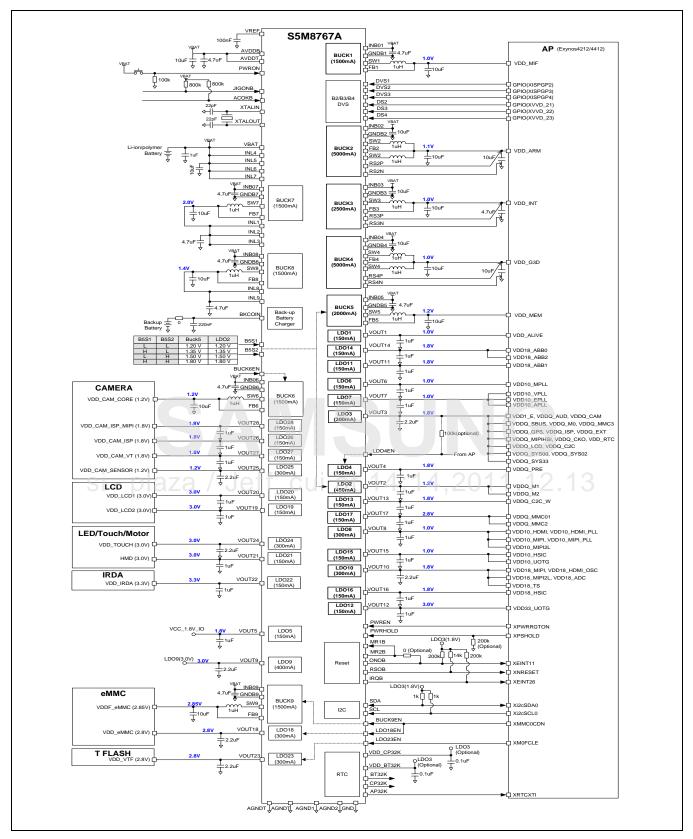


Figure 3 System Connection Diagram

٦

1.4 Ball Configuration (Top View)

r	1	2	3	4	5	6	7	8	9	10	11	12
А	NC	SW6	GNDB 6	GNDB 5	SW5	VINB7	SW7	GNDB 7	XTALI	VBAT	VREF	NC
в	VINB6	VINB4	FB6	GNDB 5	FB5	VINB5	(FB7)	VDD_ BT32K	(XTAL OUT)	(VINL1)	VLDO 26	VLDO 3
с	VINB4	VINB4	(FB4)	AGND	DVS1	VDD_ CP32K	BKCOI	СР32К	AP32K	VINL2	VLDO 27	VLDO 10
D	SW41	SW41	RS4P	AVDD T	DVS2	ACOK	ВТ32К	VLDO 16	VLDO 28	VINL3	VLDO 13	VLDO 25
Е	SW42	SW42	RS4N	PWRE	DVS3	SCL	PWRON	VLDO 14	VLDO 11	VINL4	VLDO 4	VLDO 9
F	GNDB 4	GNDB 4	GNDB 4	ONOB	RSOB	SDA	JIGON B	VLDO 19	VLDO 12	VINL5	VLDO 17	VLDO 23
G	GNDB 3	GNDB 3	FB3	IRQB	MR1B	MR2B	LDO18 EN	VLDO 24	VLDO 21	VINL6	VLDO 20	VLDO 18
н	SW3	SW3	(RS3P)	PWRH OLD	GND	GND	(LDO4 EN	VLDO 5	VLDO 22	VINL7	(VLDO 1	VLDO 8
J	VINB3	VINB3	(RS3N)	AVDD B	AGND B	BUCK 6EN	LDO23 EN	VLDO 6	VLDO 15	VINL8	VLDO 7	VLDO 2
к	GNDB 1	(FB1)	FB2	RS2P	RS2N	GNDB 2	DS3	DS4	B5S1	B5S2	AGND	VINL9
L	SW1	VINB2	VINB2	SW21	SW22	GNDB 2	DS2	BUCK 9EN	(FB9	FB8	AGND	GNDB 8
М	NC	VINB1	VINB2	SW21	SW22	GNDB 2	GNDB 9	SW9	VINB9	VINB8	SW8	NC

Figure 4 Ball Configuration

SAMSUNG ELECTRONICS

SAMSUNG

1.5 Ball Description

Pin No.	Symbol	I/O	Description		
Power Management and I2C Section					
A9	XTALIN	AI	32.768 kHz Crystal Oscillator Input. Connect 22 pF		
B8	VDD_BT32K	Power	Power Supply for 32.768 kHz BT Buffer		
B9	XTALOUT	AO	32.768 kHz Crystal Oscillator Output. Connect 22 pF		
C4	AGNDT	GND	Analog Ground for Bucks.		
C6	VDD_CP32K	Power	Power Supply for 32.768 kHz CP Buffer		
C7	BKCOIN	AO	Back up Battery Charger Output		
C8	CP32K	DO	32.768 kHz Output for CP		
C9	AP32K	DO	32.768 kHz Output for AP		
D4	AVDDT	Power	Power Supply for Bucks.		
D6	ACOKB	DI	VDCIN okay signal from external charger		
D7	BT32K	DO	32.768 kHz Output for BT		
E4	PWREN	DI	Power Enable Pin for Buck2/3/4 and LDO2/6/7/8/10/11/12/14/15/16		
E6	SCL	DI	I2C Serial Clock Input		
E7	PWRON	DI	Power Enable Signal. Connected 800 k Ω Pull-down to Ground.		
F4	ONOB	DO	PWRON key active low signal. NMOS Open Drain		
F5	RSOB	DO	Reset Output. NMOS Open Drain		
F6	SDA	DIO	I2C Serial Data Bidirectional		
F7	JIGONB	DI/	Power Enable Signal through JIG.		
G4	IRQB	DO	Interrupt Request Output (active low). NMOS Open Drain		
G5	MR1B	DI	Manual Reset Input 1		
G6	MR2B	DI	Manual Reset Input 2		
G7	LDO18EN	DI	LDO18 Enable		
H4	PWRHOLD	DI	Power Supply Hold Signal		
H5	GND	GND	Ground		
H6	GND	GND	Ground		
H7	LDO4EN	DI	LDO4 Enable		
J4	AVDDB	Power	Power Supply for Bucks.		
J5	AGNDB	GND	Analog Ground for Bucks.		
J6	BUCK6EN	DI	BUCK 6 Enable		
J7	LDO23EN	DI	LDO23 Enable		
K9	B5S1	DI	Set the Buck 5 & LDO2 default voltage.		
K10	B5S2	DI	Set the Buck 5 & LDO2 default voltage.		
K11	AGND	GND	Analog Ground		
L8	BUCK9EN	DI	BUCK 9 Enable		

SAMSUNG ELECTRONICS

Pin No.	Symbol	I/O	Description		
L11	AGND	GND	Analog Ground		
A1	NC	AIO	No Connection		
A12	NC	AIO	No Connection		
M1	NC	AIO	No Connection		
M12	NC	AIO	No Connection		
LDO Reg	ulator, BGR Se	ection			
B10	VINL1	Power	Power Supply for LDO3/10/26/27 from Buck 7 or VBAT		
C10	VINL2	Power	Power Supply for LDO13/16/25/28 from Buck 7 or VBAT		
D10	VINL3	Power	Power Supply for LDO11/14 from Buck7 or VBAT		
E10	VINL4	Power	Power Supply for LDO4/9		
F10	VINL5	Power	Power Supply for LDO12/17/19/23		
G10	VINL6	Power	Power Supply for LDO18/20/21/24		
H10	VINL7	Power	Power Supply for LDO5/22		
J10	VINL8	Power	Power Supply for LDO1/6/7/8/15 from Buck 8 or VBAT		
K12	VINL9	Power	Power Supply for LDO2 from Buck 8 or VBAT		
H11	VLDO1	AO	LDO1 Output		
J12	VLDO2	AO	LDO2 Output		
B12	VLDO3	AO	LDO3 Output		
E11	VLDO4	AO	LDO4 Output		
H8	VLDO5	AO	LDO5 Output		
J8	VLDO6	AO	LD06 Output		
J11	VLDO7	AO	LDO7 Output		
H12	VLDO8	AO	LDO8 Output		
E12	VLDO9	AO	LDO9 Output		
C12	VLDO10	AO	LDO10 Output		
E9	VLDO11	AO	LDO11 Output		
F9	VLDO12	AO	LDO12 Output		
D11	VLDO13	AO	LDO13 Output		
E8	VLDO14	AO	LDO14 Output		
J9	VLDO15	AO	LDO15 Output		
D8	VLDO16	AO	LDO16 Output		
F11	VLDO17	AO	LDO17 Output		
G12	VLDO18	AO	LDO18 Output		
F8	VLDO19	AO	LDO19 Output		
G11	VLDO20	AO	LDO20 Output		
G9	VLDO21	AO	LDO21 Output		
H9	VLDO22	AO	LDO22 Output		
· I		•			

Pin No.	Symbol	I/O	Description			
F12	VLDO23	AO	LDO23 Output			
G8	VLDO24	AO	LDO24 Output			
D12	VLDO25	AO	LDO25 Output			
B11	VLDO26	AO	LDO26 Output			
C11	VLDO27	AO	LDO27 Output			
D9	VLDO28	AO	LDO28 Output			
A10	VBAT	Power	Power Supply for BGR			
A11	VREF	AO	Bandgap Reference Output			
Buck Cor	nverter Section					
M2	VINB1	Power	Power Supply for Buck 1			
L1	SW1	AO	Switching Node of Buck 1			
K2	FB1	AI	Feedback of Buck1			
K1	GNDB1	GND	Power Ground for Buck 1			
L2	VINB2	Power	Power Supply for Buck 2			
L3	VINB2	Power	Power Supply for Buck 2			
M3	VINB2	Power	Power Supply for Buck 2			
L4	SW21	AO	Switching Node of Buck 2			
M4	SW21	AO	Switching Node of Buck 2			
L5	SW22	AO	Switching Node of Buck 2			
M5	SW22	AO	Switching Node of Buck 2			
K3	SI _{FB2} OIA		Feedback of Buck 2			
K6	GNDB21	GND	Power Ground for Buck 2			
L6	GNDB22	GND	Power Ground for Buck 2			
M6	GNDB23	GND	Power Ground for Buck 2			
K4	RS2P	AIO	Remote sensing of Buck 2 voltage			
K5	RS2N	AIO	Remote sensing of Buck 2 GND			
J1	VINB31	Power	Power Supply for Buck 3			
J2	VINB32	Power	Power Supply for Buck 3			
H1	SW31	AO	Switching Node of Buck 3			
H2	SW32	AO	Switching Node of Buck 3			
G3	FB3	AI	Feedback of Buck3			
G1	GNDB31	GND	Power Ground for Buck 3			
G2	GNDB32	GND	Power Ground for Buck 3			
H3	RS3P	AIO	Remote sensing of Buck 3 voltage			
J3	RS3N	AIO	Remote sensing of Buck 3 GND			
B2	VINB4	Power	Power Supply for Buck 4			
C1	VINB4	Power	Power Supply for Buck 4			

Pin No.	Symbol	I/O	Description			
C2	VINB4	Power	Power Supply for Buck 4			
D1	SW41	AO	Switching Node of Buck 4			
D2	SW41	AO	Switching Node of Buck 4			
E1	SW42	AO	Switching Node of Buck 4			
E2	SW42	AO	Switching Node of Buck 4			
C3	FB4	AI	Feedback of Buck 4			
F1	GNDB41	GND	Power Ground for Buck 4			
F2	GNDB42	GND	Power Ground for Buck 4			
F3	GNDB43	GND	Power Ground for Buck 4			
D3	RS4P	AIO	Remote sensing of Buck 4 voltage			
E3	RS4N	AIO	Remote sensing of Buck 4 GND			
B6	VINB5	Power	Power Supply for Buck 5			
A5	SW5	AO	Switching Node of Buck 5			
B5	FB5	AIO	Feedback of Buck 5			
A4	GNDB51	GND	Power Ground for Buck 5			
B4	GNDB52	GND	Power Ground for Buck 5			
B1	VINB6	Power	Power Supply for Buck 6			
A2	SW6	AO	Switching Node of Buck 6			
B3	FB6	A	Feedback of Buck 6			
A3	GNDB6	GND	Power Ground for Buck 6			
A6	SVINB7	Power	Power Supply for Buck 7			
A7	SW7	AO	Switching Node of Buck 7			
B7	FB7	AI	Feedback of Buck 7			
A8	GNDB7	GND	Power Ground for Buck 7			
M10	VINB8	Power	Power Supply for Buck 8			
M11	SW8	AO	Switching Node of Buck 8			
L10	FB8	AI	Feedback of Buck 8			
L12	GNDB8	GND	Power Ground for Buck 8			
M9	VINB9	Power	Power Supply for Buck 9			
M8	SW9	AO	Switching Node of Buck 9			
L9	FB9	AI	Feedback of Buck 9			
M7	GNDB9	GND	Power Ground for Buck 9			
L7	DS2	DI	DVS Selection for Buck 2			
K7	DS3	DI	DVS Selection for Buck 3			
K8	DS4	DI	DVS Selection for Buck 4			
C5	DVS1	DI	Output Voltage Setting for Buck2/3/4			
D5	DVS2	DI	Output Voltage Setting for Buck2/3/4			

Pin No.	Symbol	I/O	Description
E5	DVS3	DI	Output Voltage Setting for Buck2/3/4

NOTE: Power, GND: Power Supply.

AI, AO, AIO: Analog Input, Output, Input/Output. DI, DO, DIO: Digital Input, Output, Input/Output.

SAMSUNG ELECTRONICS

1.6 Absolute Maximum Ratings

Characteristic	Symbol	Value	Unit
Maximum Battery Supply Voltage	VBAT	– 0.3 to 6.0	V
Maximum Analog Supply Voltage	VINB1 to VINB9, VINL1 to VINL9, VDD_CP32K, VDD_BT32K	– 0.3 to 6.0	V
Junction Temperature	TJ	– 40 to 150	°C
Storage Temperature	T _{STG}	– 55 to 150	°C

NOTE: ABSOLUTE MAXIMUM RATING specifies the values beyond which the device may be damaged permanently. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect reliability. Each condition value is applied with the other values kept within the following operating conditions and function operation under any of these conditions is not implied.

1.7 Recommended Operating Condition

Characteristic	Symbol	Value	Unit
Battery Supply Voltage	VBAT	2.65 (TBD) to 5.5	V
Analog Supply Voltage	VINB1 to VINB9, VINL4 to VINL7	2.65 (TBD) to 5.5	V
	VDD_CP32K, VDD_BT32K	1.0 to 5.5	V
Analog Supply Voltage for Sub-Regulation	VINL1, VINL2, VINL3, 20	1.7 to 5.5	V
Analog Supply Voltage for Sub-Regulation	VINL8, VINL9	1.0 to 5.5	V
Operating Ambient Temperature	T _{OPR}	– 40 to 85	°C

SAMSUNG ELECTRONICS

2 Electrical Specifications

2.1 General and Logic

Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
Supply Current					•
Shutdown supply current	All Bucks and LDOs are off. Backup battery is fully charged.	_	10		μA
No load current 1 (Sleep Mode)	LDO1,5,13,17 & Buck 5 Low Power Mode, LDO3 Normal Mode, Buck 7 On, (PWREN = Low) Backup battery is fully charged. Other circuits are off.	_	120 (TBD)		μΑ
No load current 2 (Default On)	Buck1,2,3,4,5,7,8, LDO1-3, 5-8,10- 17 on. Backup battery is fully charged. Other circuits are off.	N	600	1000	μΑ
UVLO and VREF	leff cui at 14·14	2011	121	3	
Under-voltage lockout threshold	UVLO rising	,	3.1	-	V
Under-vollage lockout threshold	UVLO falling	-	2.55	-	V
Reference voltage (VREF)	VBATT = 2.65 V to 5.5 V	-	0.8	-	V
VREF capacitor		-	100	-	nF
Thermal Shutdown					
Thermal chutdown temperature	Thermal shutdown threshold	-	160	-	°C
Thermal shutdown temperature	Thermal shutdown hysteresis	-	20	-	°C
Power Management					
	Power on Key input	1.4	_	-	V
PWRON	Pull-down input resistor, Connected to AGND	-	800	_	kΩ
MRB1/2	Reset Key input	-	_	0.4	V
PWREN	Power enable input	1.4	_	_	V
PWRHOLD	Power supply hold input	1.4	_	_	V
DVS1, DVS2, DVS3, DS2,	Logic input low level	_	_	0.4	V
DS3, DS4, B5S1, B5S2, LDO4EN, LDO18EN,	Logic input high level	1.4	_	_	V

SAMSUNG ELECTRONICS

Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
LDO23EN, BUCK6EN, BUCK9EN, JIGONB, ACOKB					
	Logic input low level from AP	_	_	0.4	V
SCL, SDA input	Logic input high level from AP	1.4	_	_	V
(I2C Control Signals)	Logic input hysteresis	_	0.2	-	V
	Logic input coupling capacitor	_	_	10	pF
SDA Output (I2C Output Signal)	SDA logic output low signal, NMOS open drain output, active low	Pull-up	external res LDO3	istor to	V
	Logic output to AP, active low	_	_	0.2	V
	System reset output signal, NMOS open-drain output	Pull-up	Pull-up external resistor to LDO3		V
ONOB,RSOB, IRQB	Logic output to AP, active low	_	_	0.2	V
	RSOB De-assert delay	_	60	_	ms
I2C Control					
Clock frequency	_	_	_	3.5	MHz
Bus free time between start and stop	_	1.3	_	_	μs
Hold time repeated start condition	ARACII	0.6		_	μS
CLK low period		1.3		—	μS

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

2.2 Buck Converters

2.2.1 Buck Converter 1, 3, 5, 6, 7, 8, 9

(VBAT = 3.7 V, T_A = 25 °C, unless otherwise specified) Buck 1, 3, and 5 to 9: Cout = 10 μ F, L = 1.0 μ H

Characteristics		Test Condition	าร		Min.	Тур.	Max.	Unit	
Voltage Mode Buck Co	onverter								
Input voltage range (1)					2.7		5.5	V	
Shutdown current (2)	Regulator	^r disabled			_	0.1	_	μA	
Ground current ⁽²⁾	Buck 1,3,5,6, 7,8,9	Regulator enabled switching,	, no load, r	10	-	17	-	μΑ	
	Buck5	Low power mode				10			
	Buck 1, p	rogrammable in 6.25	5 mV Steps	;	0.650		2.225		
	Buck 3, p	rogrammable in 6.25	5 mV Steps	;	0.600		1.6		
	Buck 5, p	rogrammable in 6.25	5 mV Steps	;	0.650		2.225		
Output voltage range	Buck 6, p	rogrammable in 6.25	5 mV Steps	;	0.650		2.225	V	
	Buck 7, p			0.750		3.000			
	Buck 8, p			0.750		3.000			
	Buck 9, p	rogrammable in 12.5	5 mV Steps	;	0.750		3.300		
	Buck 1	PWM Mode			- 3.0 %	1.0	+ 3.0 %		
	Buck 3	PWM Mode		4.4	– 1.0 %	1.0	+ 1.0 %		
	IZA /	PWM Mode &	1114.	00	- 3.0 %	1.2	+ 3.0 %		
	Duals C	lload < 5 mA	B5S1 &	01	- 3.0 %	1.35	+ 3.0 %		
Default output voltage	Buck 5	(Low power	B5S2 (4)	10	- 3.0 %	1.50	+ 3.0 %	.,	
(5)		mode)		11	- 3.0 %	1.80	+ 3.0 %	V	
	Buck 6	PWM Mode		•	- 3.0 %	1.2	+ 3.0 %		
	Buck 7	PWM Mode			- 3.0 %	2.0	+ 3.0 %		
	Buck 8	PWM Mode			- 3.0 %	1.4	+ 3.0 %		
	Buck 9	PWM Mode			- 3.0 %	2.85	+ 3.0 %		
	Buck 1, 6	, 7, 8, 9			1500	_	_		
Maximum output	Buck 3				2500	_	_		
current		Normal mode			2000	_	_	mA	
	Buck 5	Low power mode			5				
Output load regulation	Buck 1, 6, 7, 8, 9	10mA < lout < 1.5	A (PWM)		_	0.15	-	%/A	
e apar load rogulation	Buck 3	10mA < lout < 2.5	A (PWM)		-	0.15	-	,0,7 (
	Buck 5	10mA < lout < 2.0	A (PWM)		_	0.15	_		

SAMSUNG ELECTRONICS

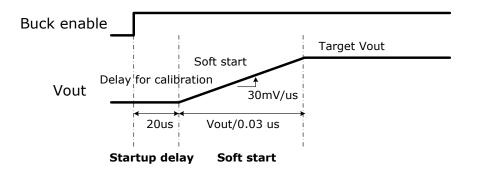
Characteristics		Test Conditions		Тур.	Max.	Unit
Output line regulation	VINBx = 3	VINBx = 3.0 V to 4.5 V		0.1	-	%/V
	Buck 1	PFET Switch	-	2200	-	
	Buck 3	PFET switch	_	3700	-	
	Buck 5	PFET switch	_	3000	-	
Current limit	Buck 6	PFET switch	_	2200	-	mA
	Buck 7, 8	PFET switch	_	2200	_	
	Buck 9	PFET switch	_	2200	_	
	Buck 1,	PFET switch (VINB to SW), ILX = - 150 mA @3.7 V	_	150	-	
	5, 6, 7, 8, 9	NFET rectifier (SW to GNDB), ILX = - 150 mA @3.7 V	-	80	-	
On-resistance		PFET switch (VINB to SW), ILX = - 50 mA @3.7 V	-	130	-	- mΩ
	Buck 3	NFET rectifier (SW to GNDB), ILX = - 150 mA @3.7 V	-	70	-	
Switching frequency	PWM mo	de	_	3.5	_	MHz
A stille discharge	Regulator GNDB3 for	disabled, resistance from FB3 to or Buck 3	-	0.1	_	1.0
Active discharge	U U	disabled, resistance from SWx to or Buck 1, 5, 6, 7, 8, 9		1		- kΩ
Soft start ramp rate (3)	Ramp rat	e in soft start operation 14 14	2011	30	13-	mV/ μs
Startup delay ⁽³⁾	Delay for	calibration		20		μS
Dynamic-change ramp Rate ⁽²⁾	Buck 3	Positive and Negative Ramp Rate in Dynamic Voltage Scale 5 mV/μs,10 mV/μs, 25 mV/μs, 50 mV/μs and 100 mV/μs Ramp off: Max ramp rate (100 mV)	5	10	100	mV/μs

2.2.2 Buck Converter 2 & 4

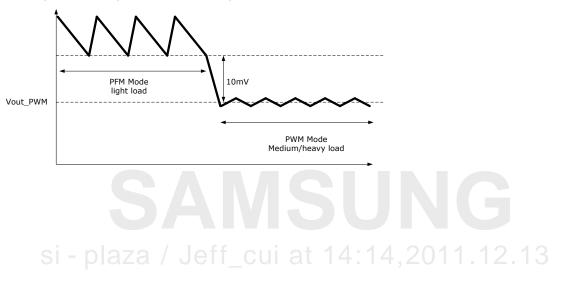
(VBAT = 3.7 V, T_A = 25 °C, unless otherwise specified) Buck 2, 4: Cout = 2x10 μ F, L = 1.0 μ H

Characteristics		Test Conditions	Min.	Тур.	Max.	Unit
Current Mode Buck Con	verter					
Input voltage range (1)			2.7		5.5	V
Shutdown current ⁽²⁾	Regulator d	Regulator disabled		0.1	_	μA
	Regulator e	nabled, no load, no switching,	_	22	_	
Ground current ⁽²⁾	No load, No Sensing mo	switching current In Remote		32		μA
Output voltage range	Programma	ble in 6.25 mV Steps	0.6		1.6	V
Default output voltage	Buck 2	PWM Mode	– 1.0 %	1.1	+ 1.0 %	V
(5)	Buck 4	PWM Mode	– 1.0 %	1.0	+ 1.0 %	V
Maximum output current	Maximum C	Dutput current	5000	_	_	mA
Output load regulation	Buck 2, 4	10 mA < lout < 5.0 A (PFM to PWM)	_	0.5	_	%/A
Output line regulation	Buck 2, 4	VINBx = 3.0 V to 4.5 V	_	0.1	_	%/V
Current limit	Buck 2, 4	PFET Switch		6000	_	mA
	$\mathbf{D}\mathbf{A}$	PFET switch (VINBx to SWx), ILX = $-150 \text{ mA } @3.7 \text{ V}$		150	_	
On-resistance SI - pla	Buck 2, 4 Za / J	NFET rectifier (SWx to GNDBx), ILX = - 150 mA @3.7 V	,201	802	13-	mΩ
Switching frequency	Buck 2, 4	PWM MODE	_	2.5	3.0	MHz
Active discharge	Regulator d GNDBx	isabled, resistance from FBx to	_	50	-	Ω
Soft start ramp rate (3)	Ramp rate i	n soft start operation	_	30	_	mV/μs
Startup delay ⁽³⁾	Delay for ca	alibration		20		μS
Dynamic-change ramp rate ⁽²⁾	Buck 2, 4	Positive and Negative Ramp Rate with 5 mV/µs,10 mV/µs, 25 mV/µs, 50 mV/µs and 100 mV/µs in Dynamic Voltage Scale Ramp off: Max ramp rate (100 mV)	5	10	100	mV/μs

NOTE:


1. Minimum input voltage is 1/Dmax multiplied by the addition of output voltage and the product of load current and sum of Ron and Rparasitic.

- 2. Design guidance; not tested for each device.
- 3. Startup waveform of Buck converter.


SAMSUNG ELECTRONICS

27

- 4. B5S1 / B5S2 control output voltage of Buck5 and LDO2 together.
- 5. PFM voltage is 10mV higher than PWM voltage.

2.3 LDOs

2.3.1 LDO (P) 4, 5, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 26, 27, 28 (150 mA, PMOS)

(VBAT = 3.7 V, T_A = 25 °C, unless otherwise
--

Characteristics	Test Conditions		Min.	Тур.	Max.	Unit
Input voltage range (VINL) ⁽¹⁾			1.7	-	5.5	V
Under voltage Lockout	Rising, 100 mV Hyste	eresis		1.6	1.7	V
Battery Voltage Range	Equal or Higher than	VINL	2.7	_	5.5	V
Output Voltage Range	IL = 150 mA Programmable in 50	mV steps	0.8	_	3.95	V
Default output voltage (VLDO)	LDO (P) 4, 5, 11, 13, 14, 16, 26, 27, 28			1.8		
	LDO (P) 17	150 mA @VINL	_	2.8	_	V
	LDO (P) 12, 19, 20, 21	= VLDO +0.3V		3.0		
	LDO (P) 22			3.3		
Maximum Load	Normal Mode	Normal Mode				
Current	Low-Power Mode		5			mA
Output Current Limit	VOUT = 90 % of VLDO		180	225	270	mA
Minimum Output Bypass Capacitance	zo / loff /	oui ot 14:14	0.7	1	12	μF
51 - pic	Battery Supply Current, with No	Shutdown	2011	< 0.1	10	
		Normal Regulation		8	10	
	Load	Low-Power Mode		0.5	1	
	Input Supply Current, with No	Shutdown		0	1	μΑ
Ground Current		Normal Regulation		12	20	
	Load	Low-Power Mode		2	5	
	Normal Mode Total C	Current		20	30	
	Low-Power Mode To	tal Current		2.5	6	
	LDO disabled Total C	Current		< 0.1		
Output voltage accuracy	Normal Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA to 150 mA.	- 3	_	+ 3	0/
	Low power Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA to 5 mA,	- 3		+ 3	%
Load Regulation ⁽²⁾	Normal Mode	VINL = VLDO + 0.3 V, VBAT = VLDO +1.5 V, IL = 0.1 mA to 150 mA		0.1		%

SAMSUNG ELECTRONICS

Characteristics	Test C	Conditions	Min.	Тур.	Max.	Unit
	Low power Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL = 0.1 mA to 5 mA		0.2		
Line Regulation	Normal Mode	VINL = VLDO + 0.3 V to 5.5V, IL = 0.1 mA		0.05		%/V
	Low power Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1mA		0.1		70/ V
	Normal Mode	VLDO = 3.3 V, IL = 150 mA		60	120	
Drop-out voltage ⁽²⁾	Norman Mode	VLDO = 1.8 V, IL = 150 mA		150	300	mV
Diop-out voltage V	Low power Mode	VLDO = 3.3 V, IL = 5 mA		50	100	
	Low power Mode	VLDO = 1.8 V, IL = 5 mA		150	300	
Output load transient (2)	Normal Mode	VINL=VLDO + 0.3V IL = 1.5 mA to150 mA, and vice versa, $tr = tf = 1 \ \mu s$		60	120	mV
Output line transient	Normal Mode	VINL = VLDO + 0.3 V to VLDO + 0.8 V to VLDO + 0.3 V, tr = tf = 1 µs, IL = 150 mA	2011	5 .12.	10 1 3	mV
		1 kHz		70		
Power Supply	f = 1 kHz to 4 MHz,	10 kHz		62		dB
Rejection	IL = 15 mA, VINL = VLDO + 0.3	100 kHz		40		
Ratio (PSRR)	V + 50 mVpp	1 MHz		45		
		4 MHz		55		
Output Noise	f = 10 Hz to 100 kHz,	VLDO = 1.8 V, VINL = VLDO + 0.3 V		70		μVrms
Output Noise	CL = 1 μF, IL = 15 mA	VLDO = 3.3 V, VINL = VLDO + 0.3 V		80		μνπισ
Enable delay (ton) ⁽³⁾	Time from LDO enable-command to the output starting to slew. Required to stabilize the internal LDO bias.			10		μs
Soft start time (tsu) ⁽³⁾	From shut down to output regulations			30	100	μS
Start-up ramp rate	After enabling		_	100	_	mV/ μs
disable delay (toff) ⁽³⁾		; The LDO output voltage on Load current (IL) and		0.1		μS

Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
	CL				
Active Discharge Resistance	Output Disabled	0.05	0.08	0.15	kΩ
Active Discharge Time (tdis) ⁽³⁾	Until 10 % of VLDO		200		μs
Transition time from low power mode to normal mode (tln), and vice versa (tnl) ⁽⁴⁾	IL = 1 mA		10		μs
Clamp Active Regulation Voltage ⁽⁵⁾	Clamp Active		VLDO	+ 2.5 %	V
The second should supe	Tj Rising.	_	165	_	° C
Thermal shutdown	Tj Falling	_	150	_	°C

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

2.3.2 LDO (P) 3, 10, 18, 23, 24, 25 (300 mA, PMOS)

Characteristics	Test	Conditions	Min.	Тур.	Max.	Unit
Input voltage range (VINL) ⁽¹⁾			1.7	_	5.5	V
Under voltage Lockout	Rising, 100 mV Hys	teresis		1.6	1.7	V
Battery Voltage Range	Equal or Higher thar	ו VINL	2.7	-	5.5	V
Output Voltage Range	IL = 300 mA Programmable in 50) mV steps	0.8	-	3.95	V
	LDO (P) 25			1.2		
Default output voltage	LDO (P) 3, 10	300 mA @VINL		1.8		v
(VLDO)	LDO (P) 18, 23	= VLDO +0.3V	_	2.8	_	V
	LDO (P) 24			3.0		
Maximum Load	Normal Mode		300			
Current	Low-Power Mode	_ow-Power Mode				mA
Output Current Limit	VOUT = 90 % of VL	DO	350	500	750	mA
Minimum Output Bypass Capacitance			1.5	2.2		μF
	Battery Supply Current, with No Load	Shutdown		< 0.1		μΑ
		Normal Regulation		8	10	
		Low-Power Mode		0.5	1	
si - pla	Input Supply Current, with No Load	Shutdown 14:14	2011	02	131	
Ground Current		Normal Regulation		12	20	
		Low-Power Mode		2	5	
	Normal Mode Total Current			20	30	
	Low-Power Mode Total Current			2.5	6	1
	LDO disabled Total		< 0.1			
Output voltage	Normal Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA to 300 mA.	- 3	_	+ 3	0/
accuracy	Low power Mode	VINL = VLDO + 0.3 V to 5.5 V, IL= 0.1 mA to 5 mA,	- 3		+3	%
Load Regulation ⁽²⁾	Normal Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL = 0.1 mA to 300 mA		0.1		%
	Low power Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL = 0.1 mA to 5 mA		0.2		70
Line Regulation	Normal Mode	VINL = VLDO + 0.3 V to 5.5V, IL = 0.1 mA		0.05		%/V

(VBAT = 3.7 V, T_A = 25 °C, unless otherwise specified)

SAMSUNG ELECTRONICS

Characteristics	Test 0	Conditions	Min.	Тур.	Max.	Unit
	Low power Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA		0.1		
Drop out voltage (2)		VLDO = 3.7 V, IL = 300 mA		60	120	
	Normal Mode	VLDO = 1.8 V, IL = 300 mA		150	300	
Drop-out voltage ⁽²⁾	Low nower Mode	VLDO = 3.3 V, IL = 5 mA		50	100	- mV
	Low power Mode	VLDO = 1.8 V, IL = 5 mA		150	300	
Output load transient (2)	Normal Mode	VINL=VLDO + 0.3V IL = 1.5 mA to 300 mA, and vice versa, $tr = tf = 1 \ \mu s$		60	120	mV
Output line transient	Normal Mode	VINL = VLDO + 0.3 V to VLDO + 0.8 V to VLDO + 0.3 V, tr = tf = 1 μ s, IL = 300 mA		5	10	mV
		1 kHz		70		
Power Supply	f = 1 kHz to 4 MHz, IL = 30 mA, VINL= VLDO + 0.3 V + 50 mVpp	10 kHz		62		
Rejection		100 kHz		40		dB
Ratio (PSRR)		1 MHz		45	4.0	
si - pia	aza / Jen_	4 MHz 14.14,	2011	55	13	
Output Noice	f = 10 Hz to 100 kHz,	VLDO = 1.8 V, VINL= VLDO + 0.3 V		70) (rm o
Output Noise	CL = 2.2 μF, IL = 30 mA	VLDO = 3.3 V, VINL = VLDO + 0.3 V		100		- μVrms
Enable delay (ton) ⁽³⁾	Time from LDO enab starting to slew. Requinternal LDO bias.	le-command to the output uired to stabilize the		10		μs
Soft start time (tsu) ⁽³⁾	From shut down to ou	utput regulations		30	100	μs
Start-up ramp rate	After enabling		_	150	_	mV/ μs
disable delay (toff) $^{(3)}$	After LDO is disabled; The LDO output voltage will discharge based on Load current (IL) and CL			0.1		μs
Active Discharge Resistance	Output Disabled		0.05	0.08	0.15	kΩ
Active Discharge Time (tdis) ⁽³⁾	Until 10 % of VLDO			400		μS
Transition time from low power mode to	IL = 1 mA			10		μS

SAMSUNG

Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
normal mode (tln), and vice versa (tnl) ⁽⁴⁾					
Clamp Active Regulation Voltage ⁽⁵⁾	Clamp Active		VLDO	+ 2.5 %	V
Thormal abutdown	Tj Rising.	_	165	_	ŝ
Thermal shutdown	Tj Falling	_	150	_	°C

SANSUNG si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

2.3.3 LDO (P) 9 (400 mA, PMOS)

(VBAT = 3.7	V. T _≜ = 25 °C.	unless	otherwise	specified)
(VD)(V) = 0.7	V, IA = 20		0010101000	opcomoa,

Characteristics	Test	Conditions	Min.	Тур.	Max.	Unit
Input voltage range (VINL) ⁽¹⁾			1.7	_	5.5	V
Under voltage Lockout	Rising, 100 mV Hy	rsteresis		1.6	1.7	V
Battery Voltage Range	Equal or Higher th	an VINL	2.7	_	5.5	V
Output Voltage Range	IL = 400 mA Programmable in §	50 mV steps	0.8	_	3.95	V
Default output voltage (VLDO)	400 mA @VINL = VLDO +0.3V		_	3.0	_	V
Maximum Load	Normal Mode		400			
Current	Low-Power Mode		5			mA
Output Current Limit	VOUT = 90 % of V	/OUT = 90 % of VLDO		600	750	mA
Minimum Output Bypass Capacitance			1.5	2.2		μF
	Battery Supply	Shutdown		<0.1		μΑ
	Current, with No Load	Normal Regulation		8	10	
		Low-Power Mode		0.5	1	
	Input Supply Current, with No Load	Shutdown		0	1	
Ground Current		Normal Regulation		12	20	
si - pla		Low-Power Mode	201	22	5	
	Normal Mode Total Current			20	30	
	Low-Power Mode Total Current			2.5	6	
	LDO disabled Tota		< 0.1			
	Normal Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA to 400 mA.	- 3	_	+ 3	
Output voltage accuracy	/oltage accuracy Low power Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA to 5 mA,	- 3		+ 3	%
	Normal Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL = 0.1 mA to 400 mA		0.1		
Load Regulation ⁽²⁾	Low power Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL = 0.1 mA to 5 mA		0.2		%
Line Regulation	Normal Mode	VINL = VLDO + 0.3 V to 5.5 V, IL =0.1 mA		0.05		0/ /\ /
Line Regulation	Low power Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA		0.1		%/V

SAMSUNG ELECTRONICS

Characteristics	Test	Conditions	Min.	Тур.	Max.	Unit
		VLDO = 3.7 V, IL = 400 mA		60	120	
Drop-out voltage ⁽²⁾	Normal Mode	VLDO = 1.7 V, IL = 400 mA		150	300	m∨
Drop-out voitage -/	Low power Mede	VLDO = 3.3 V, IL = 5 mA		50	100	
	Low power Mode	VLDO = 1.8 V, IL = 5 mA		150	300	
Output load transient ⁽²⁾	Normal Mode	VINL=VLDO + 0.3V IL = 1.5 mA to 400 mA, and vice versa, $tr = tf = 1 \ \mu s$		60	100	mV
Output line transient	Normal Mode	VINL = VLDO + 0.3 V to VLDO + 0.8 V to VLDO + 0.3V, tr = tf =1 μ s, IL = 400 mA		5	10	mV
	f = 1 kHz to 4	1 kHz		70		dB
	MHz, IL = 40 mA, VINL = VLDO + 0.3 V + 50 mVpp	10 kHz		62		
Power Supply Rejection Ratio (PSRR)		100 kHz		40		
		1 MHz		45		
		4 MHz		55		
si - plaz Output Noise	f = 10 Hz to 100 kHz,	VLDO = 1.8 V, VINL = VLDO + 0.3V	201	702	13	
Output Noise	CL = 2.2 μF, IL = 40 mA	VLDO = 3.3 V, VINL = VLDO + 0.3 V		100		μVrms
Enable delay (ton)(NOTE3)		able-command to the lew. Required to stabilize ias.		10		μS
Soft start time (tsu) ⁽³⁾	From shut down to	output regulations		40	100	μS
Start-up ramp rate	After enabling		-	100	-	mV/ μS
disable delay (toff) ⁽³⁾		led; The LDO output rge based on Load -		0.1		μS
Active Discharge Resistance	Output Disabled		0.05	0.08	0.15	kΩ
Active Discharge Time (tdis) ⁽³⁾	Until 10 % of VLD	0		400		μS
Transition time from low power mode to normal mode (tln), and vice	IL = 1 mA			10		μs

Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
versa (tnl) ⁽⁴⁾					
Clamp Active Regulation Voltage ⁽⁵⁾	Clamp Active		VLDO	+ 2.5 %	V
Thermel chutdeur	Tj Rising.	-	165	-	° C
Thermal shutdown	Tj Falling	_	150	_	°C

2.3.4 LDO (N) 1, 6, 7, 15 (150 mA, NMOS)

Characteristics	Test	Conditions	Min.	Тур.	Max.	Unit
Input voltage range (VINL) ⁽¹⁾			VLDO	_	VBAT	V
Battery Voltage Range	Equal or Higher the	an VINL	2.7	_	5.5	V
Output Voltage Range	IL = 150 mA Programmable in 2	. = 150 mA rogrammable in 25 mV steps		_	2.375	V
Default output voltage (VLDO)	LDO (P) 1, 6, 7, 15				_	V
Maximum Load	Normal Mode		150			
Current	Low-Power Mode		5			mA
Output Current Limit	VOUT = 90 % of V	OUT = 90 % of VLDO		225	270	mA
Minimum Output Bypass Capacitance			0.7	1		μF
	Battery Supply	Shutdown		< 0.1		μΑ
	Current, with No Load	Normal Regulation		28	40	
		Low-Power Mode		2	3	
	Input Supply Current, with No Load	Shutdown		0	1	
Ground Current		Normal Regulation		2	5	
		Low-Power Mode	004	0	1	
si - pla	Normal Mode Tota	201	- 30 -	45	-	
	Low-Power Mode		2	4		
	LDO disabled Tota		< 0.1			
	Normal Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA to 150 mA.	- 3	_	+ 3	%
Output voltage accuracy	Low power Mode	VINL = VLDO + 0.3 V to 5.5 V, IL= 0.1 mA to 5 mA,	- 3		+3	
	Normal Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL= 0.1 mA to 150 mA		0.1		%
Load Regulation ⁽²⁾	Low power Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL= 0.1 mA to 5 mA		0.2		
	Normal Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA		0.05		
Line Regulation	Low power Mode	VBAT = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA VINL = VLDO + 0.3 V		0.1		%/V

SAMSUNG ELECTRONICS

Characteristics	Test	Conditions	Min.	Тур.	Max.	Unit
	Normal Mode	VBAT-VLDO = 2.5 V, VLDO = 1.2 V, IL = 150 mA		60	120	
Drop-out voltage ⁽²⁾	Normanioue	VBAT-VLDO = 1.5 V, VLDO = 2.2 V, IL = 150 mA		150	300	mV
		VBAT = 3.7 V, VINL = 0, IL = 5 mA		50	100	
	Low power Mode	VBAT = 3.7 V, VINL = 3.7, IL = 5 mA		150	300	
Output load transient ⁽²⁾	Normal Mode	VINL=VLDO + 0.3V IL = 1.5 mA to150 mA, and vice versa, tr = tf = 1 μ s		60	120	mV
Output line transient	Normal Mode	VINL = VLDO + 0.3 V to VLDO + 0.8 V to VLDO + 0.3 V, tr = tf =1 μ s, IL = 150 mA		5	10	mV
	f = 1 kHz to 4	1 kHz		81		dB
Deven Querch, Deinstier	MHz, IL = 15 mA, VINL = VLDO + 0.3 V, VBAT = 3.7V +	10 kHz		62		
Power Supply Rejection Ratio (PSRR)		100 kHz		45		
		1 MHz		45		
si - pla	50 mVpp	4 MHzat 14 14	201	69 🤇	13	
Output Noise	f = 10 Hz to 100 kHz, CL = 1 μF, IL = 15 mA	VLDO = 1.0 V, VINL = VLDO + 0.3 V		50		μVrms
Enable delay (ton) ⁽³⁾		able-command to the lew. Required to stabilize as.		10		μS
Soft start time (tsu) ⁽³⁾	From shut down to	output regulations		15	100	μs
Start-up ramp rate	After enabling		_	100	Ι	mV/μs
disable delay (toff) ⁽³⁾		After LDO is disabled; The LDO output voltage will discharge based on Load		0.1		μS
Active Discharge Resistance	Output Disabled		0.05	0.08	0.15	kΩ
Active Discharge Time (tdis) ⁽³⁾	Until 10 % of VLDC)		200		μs
Transition time from low power mode to normal mode (tln), and vice versa (tnl) ⁽⁴⁾	IL = 1 mA			10		μs

Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
Clamp Active Regulation Voltage ⁽⁵⁾	Clamp Active		VLDO	+ 2.5 %	V
Thermal shutdown	Tj Rising.	_	165	_	° C
	Tj Falling	-	150	-	°C

2.3.5 LDO (N) 8 (300 mA, NMOS)

Characteristics	Tes	Test Conditions		Тур.	Max.	Unit
Input voltage range (VINL) ⁽¹⁾			VLDO	_	VBAT	V
Battery Voltage Range	Equal or Higher the	an VINL	2.7	-	5.5	V
Output Voltage Range	IL=300mA Programmable in 2	25 mV steps	0.8	μ	2.375	V
Default output voltage (VLDO)	300 mA @VINL =	VLDO + 0.3 V	_	1.0	_	V
Maximum Load	Normal Mode		300			
Current	Low-Power Mode		5			mA
Output Current Limit	VOUT = 90 % of V	LDO	350	500	750	mA
Minimum Output Bypass Capacitance			0.7	1		μF
	Battery Supply Current, with No Load	Shutdown		< 0.1		
		Normal Regulation		28	40	μΑ
		Low-Power Mode		2	3	
	Input Supply Current, with No Load	Shutdown		0	1	
Ground Current		Normal Regulation		2	5	
		Low-Power Mode		0	1	
si - pla	Normal Mode Tota	2011	- 30	45		
	Low-Power Mode		2	4		
	LDO disabled Tota		< 0.1			
Output voltage	Normal Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA to 300 mA.	- 3	_	+ 3	~
accuracy	Low power Mode	VINL = VLDO + 0.3 V to 5.5 V, IL= 0.1 mA to 5 mA,	- 3		+ 3	%
Lead Devidation (2)	Normal Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL = 0.1 mA to 300 mA		0.1		%
Load Regulation ⁽²⁾	Low power Mode	VINL = VLDO + 0.3 V, VBAT = VLDO + 1.5 V, IL = 0.1 mA to 5 mA		0.2		
	Normal Mode	VINL = VLDO + 0.3 V to 5.5 V, IL = 0.1 mA		0.05		
Line Regulation	Low power Mode	VBAT = VLDO + 0.3 V to 5.5 V, IL =0.1 mA VINL = VLDO + 0.3 V		0.1		%/V

SAMSUNG ELECTRONICS

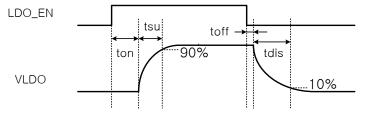
Characteristics	Tes	t Conditions	Min.	Тур.	Max.	Unit
	Normal Mode	VBAT-VLDO = 2.5 V, VLDO = 1.2 V, IL = 300 mA		60	120	
Drop-out voltage ⁽²⁾	Normanwode	VBAT-VLDO = 1.5 V, VLDO = 2.2 V, IL = 300 mA		150	300	mV
	Low power Mode	VBAT = 3.7 V, VINL = 0, IL = 5 mA		50	100	
		VBAT = 3.7 V, VINL = 3.7, IL = 5 mA		150	300	
Output load transient (2)	Normal Mode	VINL=VLDO + 0.3V IL = 1.5 mA to 300 mA, and vice versa, tr = tf = 1 μ s		60	120	mV
Output line transient	Normal Mode	VINL = VLDO + 0.3 V to VLDO + 0.8 V to VLDO + 0.3 V, tr = tf = 1 µs, IL = 300 mA		5	10	mV
	f = 1 kHz to 4	1 kHz		81		dB
Power Supply Rejection	MHz, IL = 30 mA, VINL = VLDO + 0.3 V, VBAT = 3.7V +	10 kHz		62		
		100 kHz		45		
Ratio (PSRR)		1 MHz		45		
	50 mVpp	4 MHz		55		
SI - DIa Output Noise	f = 10 Hz to 100 kHz, CL = 1 μF, IL = 30 mA	VLDO = 1.0 V, VINL = VLDO + 0.3 V	2011	. 1 Z . 50	13	μVrms
Enable delay (ton) ⁽³⁾		able-command to the output equired to stabilize the		10		μs
Soft start time (tsu) (3)	From shut down to	output regulations		16	100	μS
Start-up ramp rate	After enabling		_	100	_	mV/ μs
disable delay (toff) ⁽³⁾	After LDO is disabled; The LDO output voltage will discharge based on Load current (IL) and CL			0.1		μs
Active Discharge Resistance	Output Disabled		0.05	0.08	0.15	kΩ
Active Discharge Time (tdis) ⁽³⁾	Until 1 0 % of VLD		200		μS	
Transition time from low power mode to normal mode (tln), and	IL = 1 mA			10		μs

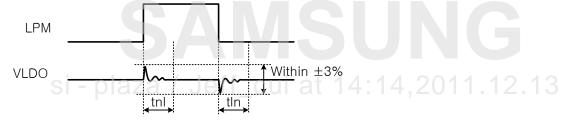
Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
vice versa (tnl) (4)					
Clamp Active Regulation Voltage ⁽⁵⁾	Clamp Active		VLDO	+ 2.5 %	V
Thermalebutdeum	Tj Rising.	-	165	-	00
Thermal shutdown	Tj Falling	_	150	_	°C

2.3.6 LDO (N) 2 (450 mA, NMOS)

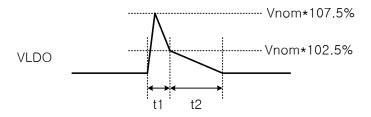
Characteristics	Tes	Test Conditions			Тур.	Max.	Unit	
Input voltage range (VINL) ⁽¹⁾				VLDO	_	VBAT	V	
Battery Voltage Range	Equal or Higher th	nan VINL		2.7		5.5	V	
Output Voltage Range	IL = 450 mA Programmable in	25 mV steps		0.8	-	2.375	V	
Default output voltage		00	00	_	1.2	_		
	450 mA @VINL	B5S1 & B5S2	01		1.35		V	
(VLDO)	= VLDO + 0.3V	(6)	10		1.5		v	
			11		1.8			
Maximum Load	Normal Mode			450			mA	
Current	Low-Power Mode	ow-Power Mode		5			ШA	
Output Current Limit	VOUT = 90 % of	VLDO		495	765	1125	mA	
Minimum Output Bypass Capacitance					1		μF	
	Battery Supply	Shutdown			< 0.1		-	
	Current, with No	Normal Regulatio	n		28	40		
	Load	Low-Power Mode			2	3		
	Input Supply Shutdown				0	1		
Ground Current	Current, with No	Normal Regulatio	n 1 4	2011	2	1 35	5 μΑ	
	Load	Low-Power Mode	,		0	1		
	Normal Mode Total Current				30	45	-	
	Low-Power Mode Total Current				2	4		
	LDO disabled Tot	al Current			< 0.1			
	Normal Mode	VINL = VLDO + 0 5.5 V, IL = 0.1 mA to 45		- 3	_	+ 3	0/	
Output voltage accuracy	Low power Mode	VINL = VLDO + 0 5.5 V, IL = 0.1 mA to 5 m		- 3		+ 3	%	
Lood Degulation (2)	Normal Mode	VINL = VLDO + 0 VBAT = VLDO + IL = 0.1 mA to 45	1.5 V,		0.1		%	
Load Regulation ⁽²⁾	Low power Mode	VINL = VLDO + 0 VBAT = VLDO + IL = 0.1 mA to 5 m	1.5 V,		0.2			
Line Regulation	Normal Mode	VINL = VLDO + 0 5.5 V, IL = 0.1 mA			0.05		%/V	
	Low power	VBAT = VLDO +).3 V	3 V (

SAMSUNG ELECTRONICS


Characteristics	Tes	Test Conditions		Тур.	Max.	Unit
	Mode	to 5.5 V, IL =0.1 mA VINL = VLDO + 0.3 V				
Drop-out voltage ⁽²⁾	Normal Mode	VBAT-VLDO = 2.5 V, VLDO = 1.2 V, IL = 450 mA		60	120	
		VBAT-VLDO =1.5 V, VLDO = 2.2 V, IL = 450 mA		150	300	mV
	Low power	VBAT = 3.7 V, VINL = 0, IL = 5 mA		50	100	
	Mode	VBAT = 3.7 V, VINL = 3.7, IL= 5 mA		150	300	
Output load transient ⁽²⁾	Normal Mode	VINL=VLDO + 0.3V IL = 1.5 mA to 450 mA, and vice versa, $tr = tf = 1 \ \mu s$		60	120	mV
Output line transient	Normal Mode	VINL = VLDO + 0.3 V to VLDO + 0.8 V to VLDO + 0.3 V, tr = tf = 1 μ s, IL = 450 mA		5	10	m∨
	f = 1 kHz to 4 MHz, IL = 45 mA, VINL = VLDO + 0.3 V,	1 kHz		81		dB
		10 kHz		62		
Power Supply Rejection		100 kHz	0011	45	12	
Ratio (PSRR) - PIAZ		1 MHz	LOII	45	10	
	VBAT = 3.7V + 50 mVpp	4 MHz		69		
Output Noise	f = 10 Hz to 100 kHz, CL = 1 μF, IL = 45 mA	VLDO = 1.2 V, VINL = VLDO + 0.3 V		50		μVrms
Enable delay (ton) ⁽³⁾		nable-command to the slew. Required to stabilize bias.		10		μS
Soft start time (tsu) (3)	From shut down t	o output regulations		16	100	μS
Start-up ramp rate	After enabling		_	100	-	mV/μs
disable delay (toff) ⁽³⁾	After LDO is disabled; The LDO output voltage will discharge based on load current (IL) and CL			0.1		μS
Active Discharge Resistance	Output Disabled		0.05	0.08	0.15	kΩ
Active Discharge Time (tdis) ⁽³⁾	Until 10 % of VLD	00		200		μs
Transition time from low	IL = 1 mA			10		μS


Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
power mode to normal mode (tln), and vice versa (tnl) ⁽⁴⁾					
Clamp Active Regulation Voltage ⁽⁵⁾	Clamp Active		VLDO	+ 2.5 %	V
Thormal abutdown	Tj Rising.	_	165	-	°C
Thermal shutdown	Tj Falling	_	150	_	°C

NOTE:


- 1. Input voltage range is guaranteed from VLDOs + 0.3 V to 5.5 V.
- 2. Performance may be different by the effect of PCB layout and external components.
- 3. Enable and Disable timing diagram is shown as below:

4. Transition waveforms from low-power mode to normal mode and vice versa are shown as below:

5. Over-voltage clamp operation is shown as below:

t1: discharged by active current sink (80 Ω) and load current. t2: discharged by bleeding resistor (PLDO: 750 k Ω , NLDO: 1.1 M Ω) and load current.

6. B5S1 / B5S2 control output voltage of Buck5 and LDO2 together.

2.4 Backup Coin Battery Charger

(VBATT = 3.7 V, $T_A = 25 \degree C$, unless otherwise specified)

Characteristics Test Conditions Min. Typ. Max. Unit

SAMSUNG ELECTRONICS

46

BKCOIN						
Programmable output voltage range	lload = 1μA	- 3 %	2.5 3.0 (Default) 3.3 3.5	+3%	V	
Constant current limit (CC Mode)	VCOIN short to ground	_	80 100 (Default) 200 400 600 800	_	μΑ	
Internal programmable resistor	_	_	Bypass 1 (Default) 3 6	_	kΩ	
Reverse leakage current from output (Off switch)	VBAT = 0 V, VCOIN = 3.0 V	-	_	1	μA	
Regulator ground current	Iload = 1 μ A (NOTE)		5	-	μA	

NOTE: Design guidance only.

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

2.5 Clock and RTC

Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
32 kHz Clock Buffer	•				
Output high voltage	CP_32 kHz, AP_32 kHz, BT_32 kHz Isource = 2 mA	VDD_x-0.4	_	_	V
Output low voltage	CP_32 kHz, AP_32 kHz, BT_32 kHz Isink = 2mA	_	_	0.4	V
Output duty cycle	_	45	50	55	%
RTC					
Operating voltage range	VBATT = Open	1.5	-	3.6	V
Time keeping current	VBATT = Open, BKCOIN = 3V	-	2.5	_	μA
Start up time	_	-	1	_	sec
Timing accuracy	Per day	-	2	_	sec
XTALIN/XTALOUT to GND capacitance	_	_	18 (TBD)	_	pF

NOTE: Tested with disconnecting crystal oscillator.

S5M8767A is guaranteed to meet performance spec from – 40 °C to 85 °C. Specification over the – 40 °C to 85 °C operating temperature range is not guaranteed by SEC.

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

3 Functional Description

3.1 Power Sequence

3.1.1 Power On Sequence

Power up event is started with active high of PWRON or active low of JIGONB or active low of ACOKB. When power boot up start event occurs (For example, when PWRON pin is on with Push button key) in power off mode (VBATT > 2.7 V), the internal timer of S5M8767A is enabled to measure time of subsequent events (For instance, PWRON high state time). If PWRON logic keep high or JIGONB and ACOKB logic keep low state until power boot up event, S5M8767A counts 16msec from Power on event and PWREN (high) signal is generated to the AP Processor and enables the Regulators sequentially. Power On/Off sequence, default On/Off regulators, and default output voltage levels can be changed with OTP (One Time Programmable) control.

 $\begin{array}{l} \mbox{Exynos4412: 23 ea Reg. ON Sequence PWRON \rightarrow B7 (LDO2.0 V) \rightarrow B8 (LDO1.4 V) \rightarrow L1 (Alive,1 V) \rightarrow L11 (ABB1, 1.8 V) , L14 (ABB0/2, 1.8 V) \rightarrow B2 (ARM, 1.1 V) \rightarrow B1 (DRAM, 1.0 V) \rightarrow B3 (INT, 1.0 V) \rightarrow B4 (3D, 1.0 V) \\ \rightarrow L6 (MPLL, 1.0 V) , L7 (XPLL, 1.0 V) \rightarrow L3 (SYS33, 1.8 V) , L4 (PRE, 1.8 V) \rightarrow B5 (MEM, 1.2 V) \rightarrow L2 \\ (VDDQ_M1/2, 1.2 V) , L13 (VDDQ_C2C 1.8 V) \rightarrow L5 (VDDQ_MMC1 2.8 V) , L17 (VDDQ_MMC2/3, 2.8 V) \rightarrow L8 \\ (HDMI, 1.0 V) , L15 (USB, 1.0 V) \rightarrow L10 (MIPI/ADC, 1.8 V) \rightarrow L16 (HSIC, 1.8 V) , L12 (USB3, UHOST, 3.0 V) \rightarrow RESETB (60msec) \\ \end{array}$

Power on sequence	Regulator	Note	
1 si - n	Buck7	LDO2.0 V1 14.14 2011 12 13	
2	Buck8	LDO1.4 V	
3	LDO1	Alive,1 V	
4	LDO11 / LDO14	ABB1, 1.8 V / ABB0/2, 1.8 V	
5	Buck2	ARM, 1.1 V	
6	Buck1	DRAM, 1.0 V	
7	Buck3	INT,1.0 V	
8	Buck4	3D, 1.0 V	
9	LDO6 / LDO7	MPLL, 1.0 V / XPLL,1.0 V	
10	LDO3 / LDO4	SYS33, 1.8 V / PRE, 1.8 V	
11	Buck5	MEM,1.2 V	
12	LDO2 / LDO13	VDDQ_M1/2, 1.2 V / VDDQ_C2C 1.8 V	
13	LDO5 / LDO17	VDDQ_MMC1 2.8 V / VDDQ_MMC2/3	
14	LDO8 / LDO15	HDMI, 1.0 V / USB, 1.0 V	
15	LDO10	MIPI/ADC,1.8 V	
16	LDO16 / LDO12	HSIC, 1.8 V / USB3, UHOST, 3.0 V	

SAMSUNG ELECTRONICS

49

3.1.1.1 Power Off Sequence

There are eight methods to Power shut down the system described as follows:

- Manual Reset Power off (MR1 & MR2 are low (After 3, 5, 7, 10 sec))
- PWRHOLD is Low when PWRON is Low & JIGONB is High (Except at WTSR = 1)
- LDO3 is off
- PWRON is Low & JIGONB is High when PWRHOLD is Low (Except at MR POWERON Seq.)
- At Alarm0, 1 & SMPL High, If PWRHOLD signal is not rising in 1sec
- After MR High, IF PWRHOLD signal is not rising in 750ms (0.8s, 1s, and 1.6s).
- After WTSR EVENT, If PWRHOLD signal is not rising in 250msec to 1sec.
- After powering-on with active low of ACOKB, if PWRHOLD signal does not go high within 1sec.

3.1.1.2 Power On and Active Modes

The Power On event signal is needed for the system to start Power boot up sequence.

When the Power boot up sequence ends, RSOB becomes high and the system is able to control the internal block and register value by I2C. After then, if PWRHOLD signal which is active high is received from AP, the system enters active mode.

When the system enters Power on sequence, S5M8767A turns on the supplies sequentially to prevent the inrush current which can make the system unstable.

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

50

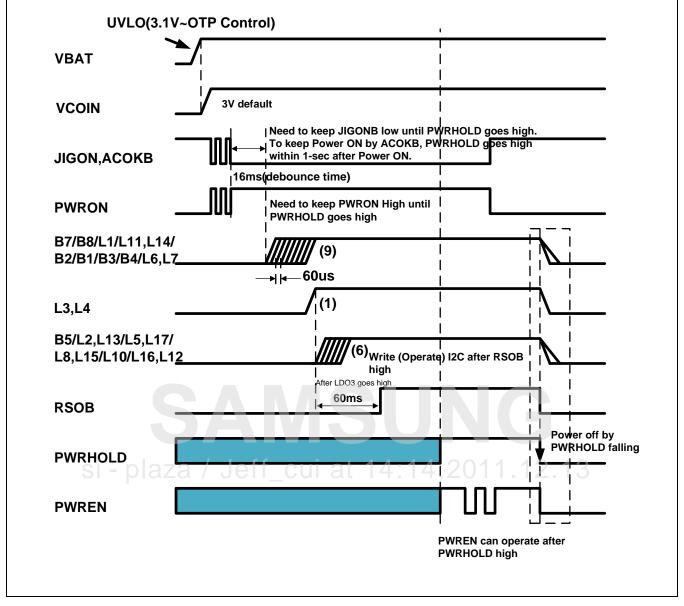


Figure 5 Power On Sequence

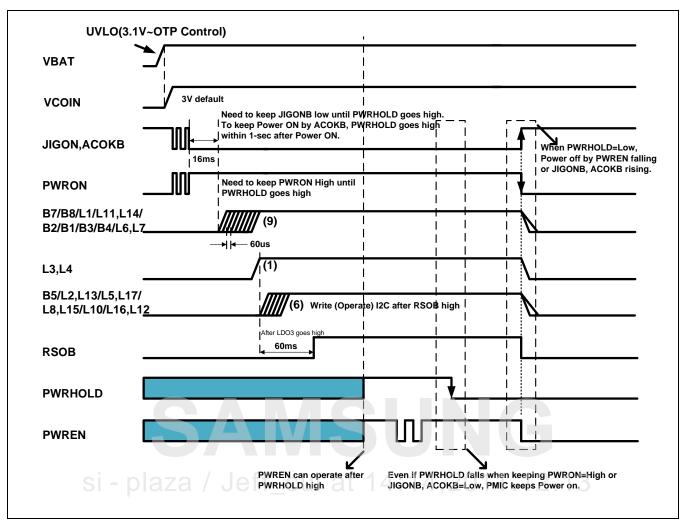
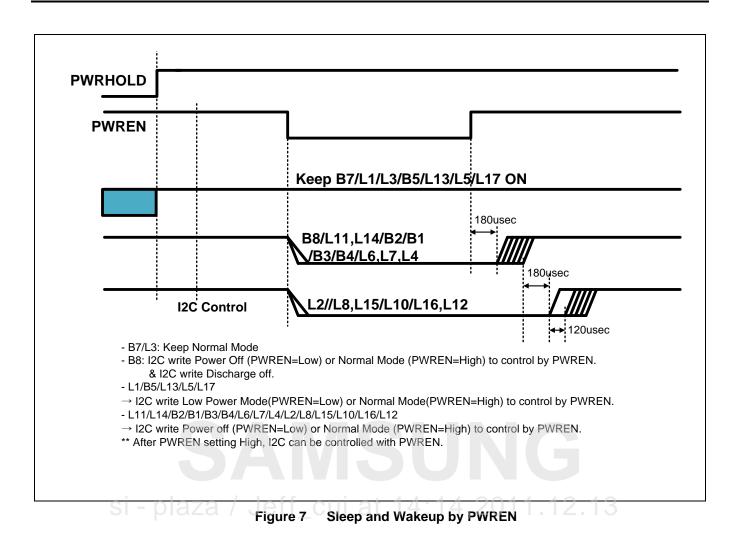



Figure 6 Power on/off Sequence

52

3.1.2 MR, SMPL, WTSR, RTC, POR, IRQB

3.1.2.1 Manual Reset Function

Manual Reset function is for Hardware reset in the Active mode. If MR1B and MR2B is kept low during the VLDO3 is active state, the system makes all internal presetting registers as default in the active mode (automatic power on sequence). If this hardware reset function is not required, connect MRB pin to high.

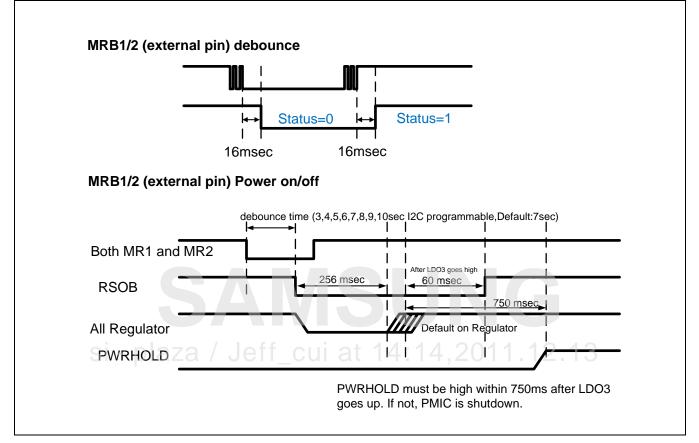
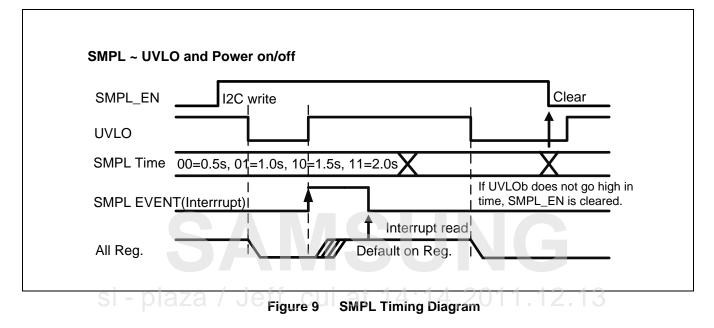


Figure 8 Manual Reset Sequence Timing Diagram


SAMSUNG ELECTRONICS

3.1.2.2 SMPL

When VBATT voltage is too low due to external causes (such as battery shock, contact problem, and so on), S5M8767A will recover by Sudden Momentary Power Loss (SMPL) circuit. SMPL is implemented by BKCOIN voltage. The SMPL value is disabled by default. This function operates when SMPL is enabled.

When the VBATT voltage drops below UVLO, the system turns on the SMPL timer (Default 0.5s). If the VBATT voltage is above the UVLO voltage within the SMPL timer operations, the system enters power on sequence and interrupt signal is generated to AP. If VBATT voltage cannot recover over UVLO voltage in SMPL timer operations, the system maintains power off sequence. The system does not monitor the VBATT voltage when SMPL is disabled.

SAMSUNG ELECTRONICS

3.1.2.3 Watchdog Timeout

Watchdog Timeout keeps the chip on and resets the chip to its default register value (software reset).

For this operation, WTSR must be enabled (It is disabled by default). If PWRHOLD is low and the following function is started in active mode, all internal presetting register from falling edge to 60ms timer operations will be reset by the system. RSOB is set high after 60ms timer ends and interrupt signal is transferred to the AP simultaneously.

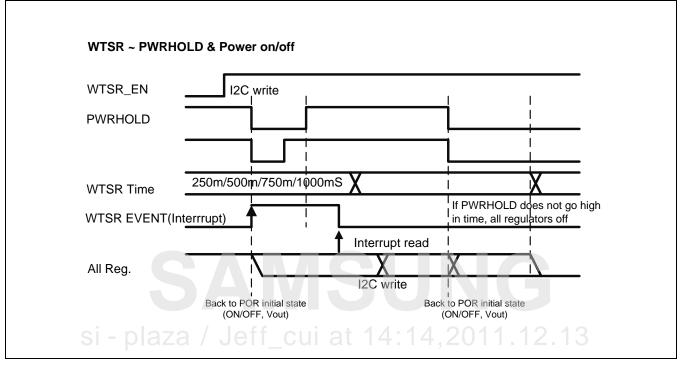


Figure 10 WTSR Timing Diagram

3.1.2.4 RTC

S5M8767A contains 8 byte timekeeping registers and two Alarm registers. The real-time clock stores time and date in a Binary Code Decimal (BCD) format. A timekeeping register comprises Century, Year, Month, Day, Date, and Hour (12/24 mode selectable). Each of these data can be read/write.

Alarm register is divided into Alarm threshold register and Alarm Configuration register. When it reaches the time threshold, the interrupt signal by configuration register will be delivered to the AP. When system is in off mode, the alarm can wake up (Turn on) by Alarm Wake up sequence.

3.1.2.5 RTC Alarm Power on Mode

S5M8767A has two Alarm interrupts used by RTC. The Alarm operates Power on sequence at a designed time.

SAMSUNG ELECTRONICS

56

3.1.2.6 Power on Reset (POR) Function

Power On Reset for I2C occurs when S5M8767A turns off or PWRHOLD = Low which puts the PMIC into shutdown and clears all previously programmed output voltages in the internal registers.

3.1.2.7 Interrupt Request (IRQB)

S5M8767A provides the power supply to system and checks the events that occur in the system. It sends the information of events to the AP through IRQB pin and I2C bus.

When any event occurs at S5M8767A, it generates the interrupt signal and writes the information to the corresponding register. In addition, S5M8767A also informs about the occurrence of events to the AP by pulling down IRQB pin (Active low). When IRQB pin is pulled down, the AP reads interrupt register in S5M8767A. After reading the interrupt register, the AP must reset the interrupt register (write "0") for further interrupt generation.

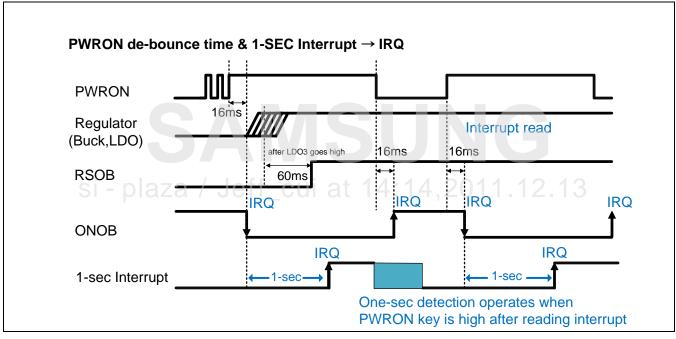


Figure 11 Power On Debounce and Interrupt

SAMSUNG ELECTRONICS

57

3.2 UVLO, Reference Voltage, Thermal Shutdown

S5M8767A contains Under-Voltage Lock Out (UVLO). The thermal protection limits total power dissipation. Reference block supplies voltage reference for regulators and internal block, and it has a noise filter to suppress voltage fluctuation.

3.2.1.1 Under-Voltage Lock Out (UVLO)

The UVLO circuit for the S5M8767A prevents the device from malfunctioning at low-input voltages and from excessive discharge of the battery. As VBAT voltage is under UVLO threshold, the S5M8767A enters into UVLO state which forces the device to a inactive state until the VBAT is high enough to allow the device to operate normal function.

The UVLO voltage level are 3.1 V rising and 2.55 V falling (hysteresis 550 mV), respectively. In case the VIN voltage rises over 3.1 V, S5M8767A including all regulators starts to operate from lockout state and if the VBAT voltage falls under 2.55 V, S5M8767A is turned off.

3.2.1.2 Reference Voltage and Thermal Shutdown

When VBATT is applied, UVLO, Reference Voltage (VREF), and BKCOIN start to work. VREF generates 0.8V output and no current can be loaded from VREF for external use. Loading any current from this node can drop the voltage in reference and LDO output. VREF needs an external bypass capacitor (over 100nF) for noise reduction.

Thermal overload protection in each regulator limits total power dissipation in S5M8767A which shut downs corresponding regulator at a die temperature of 160 °C above and turns it on with a down hysteresis of 20 °C.

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

3.3 Regulator

3.3.1 Buck Converters

S5M8767A contains high efficiency 9 buck converters ranging from 1.5 A to 5 A of maximum output current driving capacity. Each Buck converter has a forced PWM (FPWM) and AUTO mode operation which enable mode transition to achieve high efficiency according to driving current range. It operates in PWM mode under heavy loads and saves power dissipation at light loads by less switching in PFM operation.

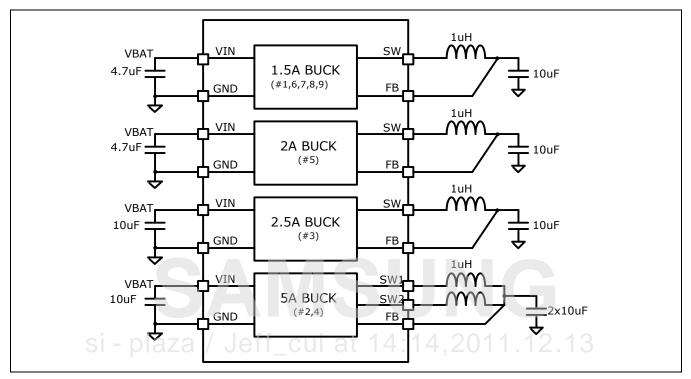
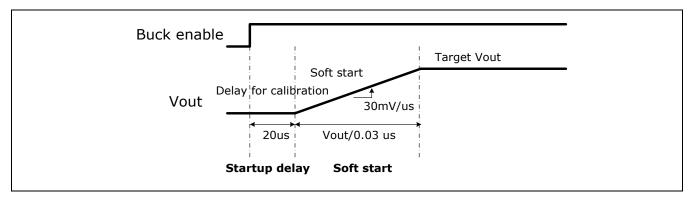
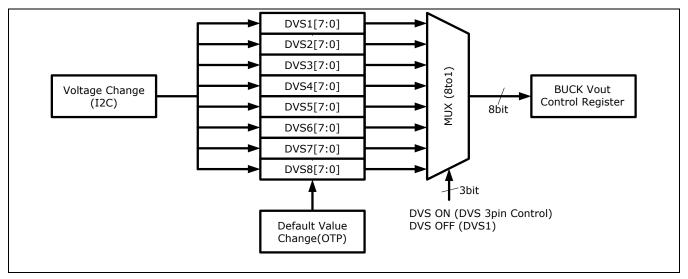
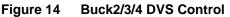


Figure 12 Buck Converter Block Diagram

Soft-start operation is integrated to protect the chip from the in-rush current. In power-on sequence, output voltage is increased with a 30 mV/µs ramp slope. Delay time for calibration must be needed before soft start operation; therefore the total start time which depends on output target voltage including calibration and soft start period for 1V output voltage after enabling Buck converter is approximately 60 µs.




Figure 13 Power On Sequence in Buck Converter


SAMSUNG ELECTRONICS

59

Each Buck provides a wide range of output voltage which is controlled by Dynamic Voltage Scale (DVS) function which has 8 bits of output voltage control. Buck 1, Buck 5 and Buck 6 have a controllable output voltage range from 0.65 V to 2.24 V. Buck 2, Buck 3 and Buck 4 have a controllable output voltage range from 0.6 V to 1.6 V. Buck 7, Buck 8 and Buck 9 have a controllable output voltage range from 0.65 V to 3.3 V (3.0 V for Buck 7/8). Ramp slope can be controlled from 1 mV/µs to 100 mV/µs using 4 bits.

Remote Sense function is integrated in order to compensate voltage drop by parasitic resistance across PCB traces in high current. Regulated voltage is required to maintain precision in the regulation. In case of using remote sense function, connect Remote sense pin as shown in below figure (a). If remote sense is not required, remote sense function can be disabled using I2C control in software method shown in figure (a) or RSP must be directly connected to the ground and RSN must be connected to the VBAT in hardware method shown in figure (b).

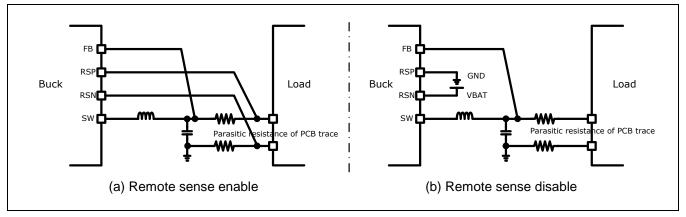


Figure 15 Remote Sense Pin Connection

The dual phase scheme approach offers improved response time, superior ripple cancellation, and thermal distribution. The switching of each channel is timed to be symmetrically out of phase. As a result, a combined ripple frequency of the dual phase buck converter is twice the frequency of single phase buck converter, whereas the peak to peak amplitude of the combined inductor currents for the dual phase buck converter is reduced.

SAMSUNG ELECTRONICS

60

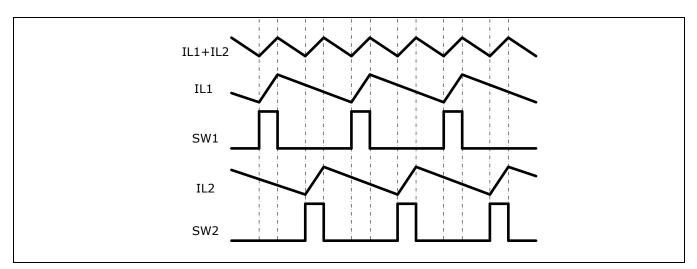


Figure 16 SW Node Voltage and Inductor Current Waveforms in Dual Phase Buck Converter

For Buck 5 converter and LDO2, the default output voltage setting can be set using B5S1 and B5S2 GPIOs which depend on set application.

The low power mode using an internally integrated LDO for Buck 5 converter during sleep mode operation is available up to 5 mA current capability. When Buck5 converter operation is changed between normal mode and low power mode, the delay is needed to reduce the glitch. In detail, the delay for the bias settling time of LDO is needed during the transition from normal mode to low power mode, while the soft start time of Buck 5 converter is required during the transition from low power mode to normal mode.

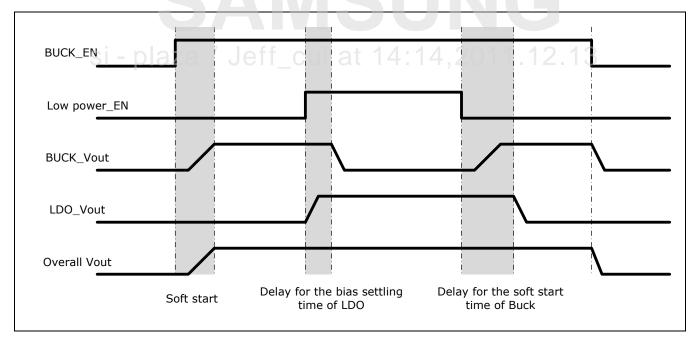


Figure 17 Mode Transition Waveforms in Buck 5

SAMSUNG ELECTRONICS

61

3.3.1.1 Inductor Selection

The inductor can be chosen with two main considerations which include its DC resistance (DCR) and saturation current. Since the inductor value has a significant impact on the ripple current and output voltage ripple, it should be carefully considered. A 1.0 μ H inductor with a saturation current of at least 2 A to 2.5 A is strongly recommended for high load capacity buck converters (Buck2/3/4/5) with a full load. For medium load capacity buck converters (Buck1/6/7/8/9), a slightly smaller size is allowed. Also, inductor rated current can be reduced with lower DCR. For maximum efficiency, the inductor's DCR should be as low as possible.

NOTE: The inductor type and core materials are different among several manufacturers and affect the converter efficiency. See <u>Table 1</u> for suggested inductors and their manufacturers. You may choose other manufacturers' inductors with similar inductor value and DCR.

Model Number	Inductor Value (μH)	Vendor	Dimension L × W × H (mm)	Max. IDC (A)	Max. DCR (mΩ)
1.0 μH Multi-Layer Chip	or Metal Alloy Ty	pe Power Indu	ctor for Buck2/3/4/5(High Load Ca	pacity)
DFE252010C	1.0	токо	2.5 x 2.0 x 1.0	3.0	60
CIG22H1R0MAE	1.0	SEM	2.5 x 2.0 x 0.9	2.3	65
TFM252010A-1R0M	1.0	TDK	2.5 x 2.0 x 1.0	2.5	65
LQM2HPN1R0NGHL07	1.0	Murata	2.5 x 2.0 x 0.9	2	100
DFE252012C	1.0	токо	2.5 x 2.0 x 1.2	3.8	59
1.0 μH Multi-Layer Chip	Type or Metal Alle	by Power Indu	ctor for Buck1/6/7/8/9) (Medium Loa	d Capacity)
DFE201610C	1.0	токо	2.0 x 1.6 x 1.0	2.0	80
MDT2012-CR1R0N	1.0	токо	2.0 x 1.2 x 1.0	2.15	80
CIG21L1R0MNE	za 7 _{1.0} ,em	SEM	2.0 x 1.2 x 1.0	1.15	110
MLP2012L1R0M	1.0	TDK	2.0 x 1.2 x 1.0	1.2	100
LQM2MPN1R0MG0	1.0	Murata	2.0 x 1.6 x 1.0	1.4	55

Table 1 List of Recommended Inductors

3.3.1.2 Capacitor Selection

Ceramic capacitors are used for most linear regulators' and switching converters' input and output filters. Low equivalent series resistance (ESR) ceramic capacitors should be chosen as output filter capacitors and input filter capacitors. Since X5R or X7R ceramic capacitors maintain their capacitance over a wide voltage range and temperature range, X5R or X7R ceramic capacitors are strongly recommended.

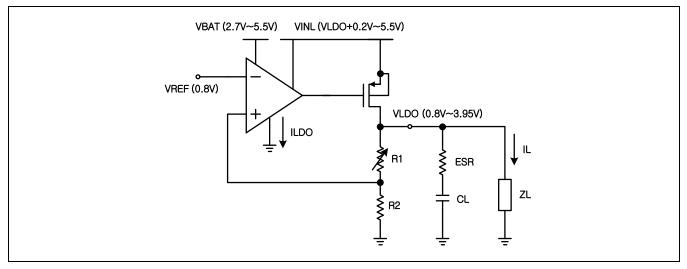
3.3.1.3 Output Capacitors

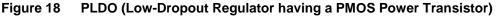
The output ripple voltage depends upon the charging and discharging of output capacitor and depends upon the ESR too. A X5R or X7R type of 10 μ F ceramic output capacitor with low ESR is recommended for linear regulators and switching converters. This keeps the output ripple voltage small and ensures good transient response for converter with loop stability over a wide operating temperature range and voltage.

SAMSUNG ELECTRONICS

3.3.1.4 Input Capacitors

A ceramic input capacitor is used to improve the input voltage filtering. For instance, a ceramic input capacitor of 1 μ F to 4.7 μ F with low ESR is sufficient for linear regulator and switching converter input voltage. It provides noise filtering of the input voltage spikes. The impedance of input capacitor should be kept low at the switching frequency. If a lower capacitor is used, ringing can appear at the supply pin (ringing can cause loop instability or even damage the part). You can choose other manufacturers' capacitors with similar value and low ESR, as shown in <u>Table 2</u>.

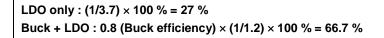

Model Number	Туре	Vendor	Dimension Inch (mm)	Voltage Rating (V)	
1.0 μF for CIN, COUT					
CL05A105KP5NNNC	Ceramic, X5R	SEM	0402 (1005)	10	
GRM155R61A105KE15	Ceramic, X5R	Murata	0402 (1005)	10	
JMK105BJ105MV	Ceramic, X5R	Taiyo Yuden	0402 (1005)	6.3	
2.2 μF for CIN, COUT					
CL05A225KO5NQNC	Ceramic, X5R	SEM	0402 (1005)	16	
CL05A225MP5NSNC	Ceramic, X5R	SEM	0402 (1005)	10	
C1005X5R1A225K	Ceramic, X5R	TDK	0402 (1005)	10	
4.7 μF for COUT					
C1005X5R0J475M	Ceramic, X5R	TDK	0402 (1005)	6.3	
CL05A475KP5NRNC	Ceramic, X5R	SEM	0402 (1005)	10	
GRM155R61A475M	Ceramic, X5R	Murata	0402 (1005)	10	
10 μF for COUT	za / Jen_	curati	4.14,2011.12		
GRM155R61A106M	Ceramic, X5R	Murata	0402 (1005)	6.3	
JMK107BJ106MA	Ceramic, X5R	Taiyo Yuden	0603 (1608)	6.3	
22 μF for COUT					
GRM188R60J226M	Ceramic, X5R	Murata	0603 (1608)	6.3	
JMK212BJ226MG	Ceramic, X5R	Taiyo Yuden	0805 (2012)	6.3	


SAMSUNG ELECTRONICS

3.3.2 LDOs

Twenty eight LDOs consisted of 22 PLDOs (PMOS-type LDO) and 6 NLDOs (NMOS-type LDO) are integrated into S5M8767A. PLDOs are mainly used for the high output voltages ranging from 0.8 V to 3.95 V with a 50mV step. Their maximum output current driving capacities are 150 mA, 300 mA, and 400 mA. PLDO structure is depicted as below figure.

Power efficiency of LDO is given by


$$\eta = \frac{power(output)}{power(input)} \times 100\% = \frac{VLDO \cdot IL}{VINL \cdot (IL + ILDO)} \times 100\% \approx \frac{VLDO}{VINL} \times 100\%$$

where, VLDO is the LDO output voltage, IL is output load current, ILDO is the current consumed by LDO itself, and VINL is the power supply for the power transistor. Despite of many advantages, one critical drawback of LDO is low power efficiency especially in case of heavy load and low voltage output.

SAMSUNG ELECTRONICS

The approximate estimation example of power efficiency with and without 1.2 V sub-regulation buck converter (Buck converter + NLDO and PLDO)

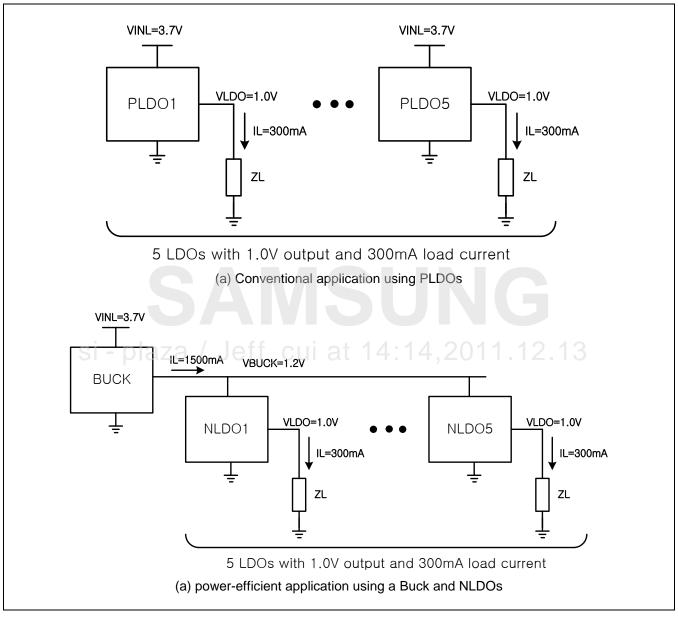
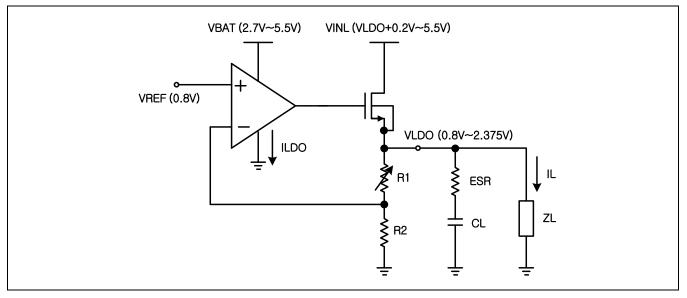


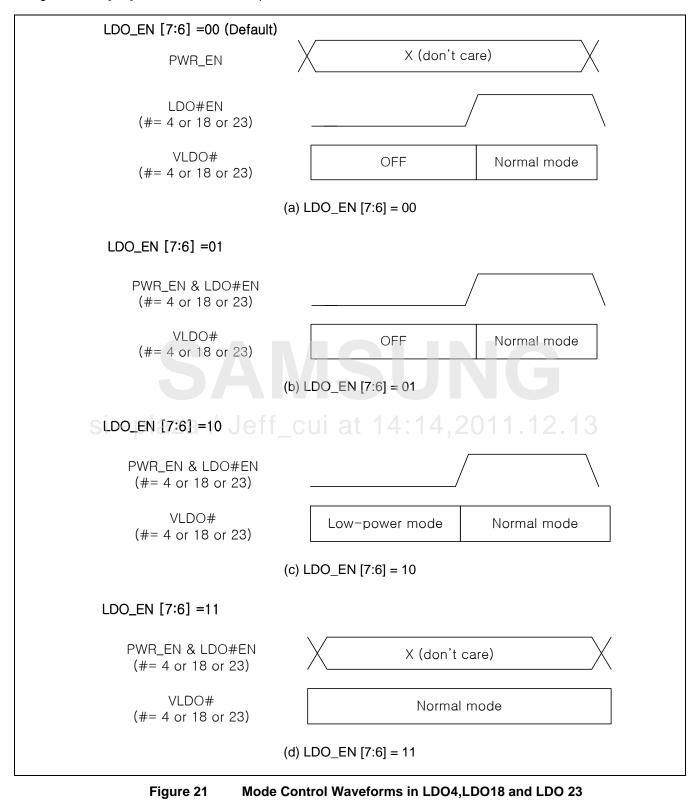
Figure 19 Application Example

SAMSUNG ELECTRONICS

65

To overcome the low power efficiency, N-type LDOs which are powered from sub-regulation buck converter are recommended for the low output voltages ranging from 0.8 V to 2.375 V with 25 mV step. Their maximum output current driving capacities are 150 mA, 300 mA, and 450 mA. NLDO structure is shown as below figure.




Figure 20 NLDO (Low-Dropout Regulator having a NMOS Power Transistor)

Both PLDO and NLDO support normal and low power modes alternatively. In normal-mode operation, PLDO or NLDO guarantees output voltage regulation between 150 mA and 450 mA depending on their capacity. In low-power-mode operation, it guarantees output voltage supplying maximum 5 mA. Each LDO requires an external capacitor of X5R and X7R type MLCC. The capacitor value from 1 uF to 2.2 uF depending on its capacity is needed to guarantee good stability.

SAMSUNG ELECTRONICS

66

In case of LDO4, LDO18, and LDO23, AP can control to turn on and off each of them directly using its GPIOs which are connected to LDO4EN, LDO19EN, and LDO23EN pins when using PWREN coupled with LDOxEN. Using LDO_EN [7:6] control bits, LDO output mode can be controlled as below.

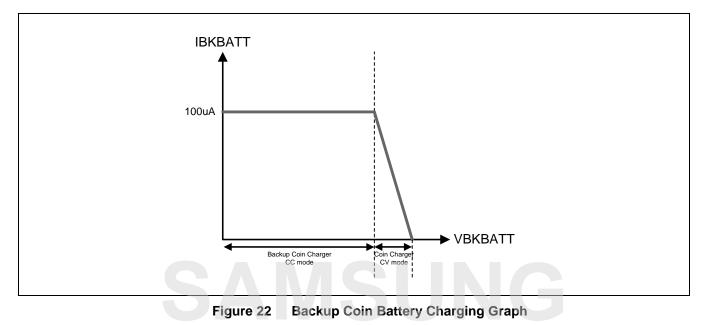
SAMSUNG ELECTRONICS

67

LDO	Default Voltage	Max. Current	Voltage Range/Step (I2C)	Purpose_AP, Peri ^(NOTE)	
LDO1	1.0 V	150 mA	0.8 V to 2.375 V, 25 mV step	Alive	
LDO2	1.2 V	450 mA	0.8 V 10 2.373 V, 25 IIIV Step	VDDQ_M1/M2	
LDO3	1.8 V	300 mA		E, SBUS, GPIO, MIPIHSI, RTC, CKO, SYS33	
LDO4	1.8 V	150 mA	0.8 V to 3.95 V, 50 mV Step	VDD_PRE	
LDO5	1.8 V	150 mA		VCC_18_IO	
LDO6	1.0 V	150 mA		VDD10_MPLL	
LDO7	1.0 V	150 mA	0.8 V to 2.375 V, 25 mV step	VDD10_VPLL ,EPLL,APLL	
LDO8	1.0 V	300 mA		VDD10_HDMI, HDMI_PLL, MIPI, MIPI_PLL, MIPI2L	
LDO9	3.0 V	400 mA		VDD33_EFNAND	
LDO10	1.8 V	300 mA		VDD18_HDMI_OSC , MIPI, MIPI2L,ADC,TS	
LDO11	1.8 V	150 mA	0.8 V to 3.95 V, 50 mV Step	VDD18_ABB1	
LDO12	3.0 V	150 mA		VDD33_UOTG	
LDO13	1.8 V	150 mA		VDDQ_C2C	
LDO14	1.8 V	150 mA		VDD18_ABB0, ABB2	
LDO15	1.0 V	150 mA	0.8 V to 2.375 V, 25 mV step	VDD10_HSIC, UOTG	
LDO16	1.8 V	150 mA		VDD18_HSIC	
LDO17	2.8 V	150 mA	ui at 14:14,201	VDDQ_MMC01/MMC2	
LDO18	2.8 V	300 mA	urat 14.14,20	VDDF_eMMC	
LDO19	3.0 V	150 mA		Cam_AF	
LDO20	3.0 V	150 mA		VCC-LCD	
LDO21	3.0 V	150 mA		Haptic Motor Driver	
LDO22	3.3 V	150 mA	0.8 V to 3.95 V, 50 mV Step	IRDA (LEDA)	
LDO23	2.8 V	300 mA		T-Flash	
LDO24	3.0 V	300 mA		Touch	
LDO25	1.2 V	300 mA		Cam Sensor	
LDO26	1.8 V	150 mA		CAM ISP	
LDO27	1.8 V	150 mA		VT Cam	
LDO28	1.8 V	150 mA		CAM_ISP_MIPI	

Table 3 Information of Power Supply on Each LDO

NOTE: Samsung Application Processor is recommended.


SAMSUNG ELECTRONICS

3.4 Backup Coin Battery

3.4.1 Backup Coin Battery

The backup coin battery charger is a voltage limited current source with a 1 k Ω output resistor. This charger is always on regardless of power on/off status (except if the main battery voltage is below UVLO). Backup Charger has an I2C controlled output voltage from 2.5 V to 3.5 V with a default output voltage of 3.0 V. This charger can also support a super capacitor.

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

4 Digital Interface (I2C)

S5M8767A is controlled through the I2C interface. The operational mode in S5M8767A is set by the I2C. Read and Write modes are also supported. S5M8767A is activated only as a slave mode.

Access Mode	Host (Master)	S5M8767A (Slave)
Write	Transmitter	Receiver
Read	Receiver	Transmitter

4.1 Slave Address

Slave address is used to select the S5M8767A on the I2C bus. This address consists of 8-bit data. The LSB 1-bit determines the read or write mode. If the LSB 1-bit is low, the write mode is selected.

Section	Address selection	Access Mode
DM section	1100 1100 (0×CC)	PM Write
PM section	1100 1101 (0×CD)	PM Read
RTC sectionSi - plaza / Jeff CU	0000 1100 (0×0C)	RTC Write
RTC section ST = praza / Sert_Cu	0000 1101 (0×0D)	RTC Read

SAMSUNG ELECTRONICS

4.2 Register Address

4.2.1 I2C Interface

4.2.2 Control Interface using SCL (Clock) and SDA (Data)

In multi bytes write mode, the destination address of transferred data is selected by the Register Address (RA). Each of the register addresses for data should not be transferred, since the register address for the multi bytes data will be automatically increased by 1 until the STOP state.

In multi bytes read mode, the source address of transferring data is selected by the RA. Each of the register addresses for data should not be transferred, since the register address for the multi bytes data will be automatically increased by 1 until the STOP state.

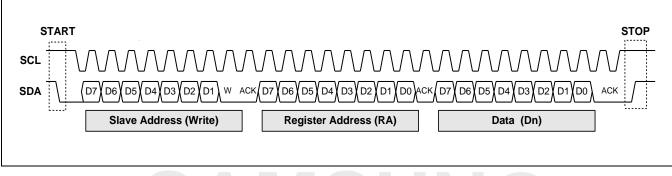


Figure 23 Single Byte Write Mode

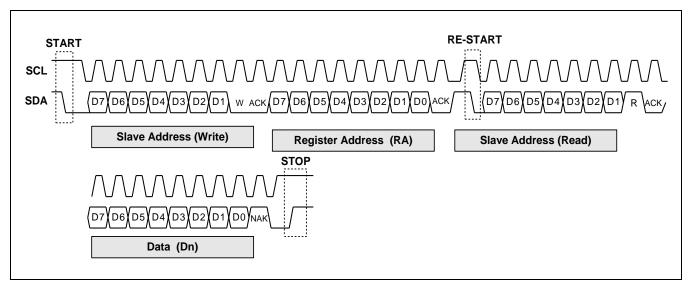

_{start} si - plaza / Jeff_cui at 14:14,2011.12.13
SDA (D7/D6/D5/D4/D3/D2/D1) W ACK/D7/D6/D5/D4/D3/D2/D1/D0/ACK/CD7/D6/D5/D4/D3/D2/D1/D0/ACK/
Slave Address (Write) Register Address (RA) Data (Dn)
Data (Dn +1)Data(Dn+)Data (Dn + m)

Figure 24 Multi Bytes Write Mode

SAMSUNG ELECTRONICS

71

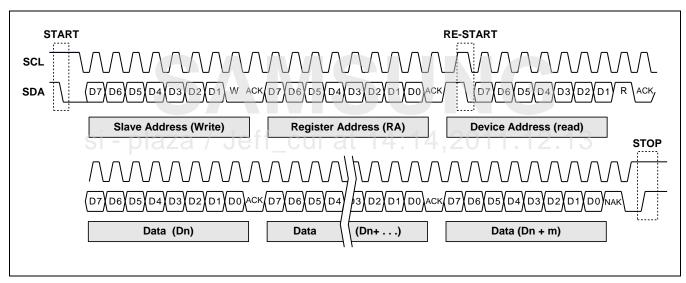


Figure 26 Multi Bytes Read Mode

4.2.3 I2C Interface Timing Diagram

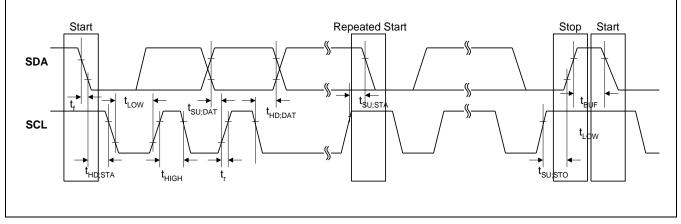


Figure 27 I2C Control Interface Timing Diagram

SAMSUNG ELECTRONICS

Table 4 I2C Electrical Specification

(VBATT = 3.7 V, T_A = 25 °C, unless otherwise specified)

Oh ann a tariatian	Complete L	Standa	rd Mode	L Insite
Characteristics	Symbol	Min.	Max.	Units
SCL clock frequency	f SCL	0	3400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t HD;STA	0.16	_	μS
LOW period of the SCL clock	t LOW	0.16	-	μS
HIGH period of the SCL clock	t HIGH	0.06	_	μS
Set-up time for a repeated START condition	t SU;STA	0.16	-	μS
Data hold time: for CBUS compatible masters ⁽¹⁾ for I2C-bus devices	t HD;DAT	-	70	ns
Data set-up time	t SU;DAT	10	_	ns
Rise time of both SDA and SCL signals	t r	10	80	ns
Fall time of both SDA and SCL signals	t f	10	80	ns
Set-up time for STOP condition	t SU;STO	0.16	-	μS
Bus free time between STOP and START conditions	t BUF	0.5	-	μS
Capacitive load for each bus line	C _b	_	100	pF
Low level input voltage	V _{IL}		0.4	V
High level input voltage	V _{IH}	1.4		V

NOTE:

1. All values refer to the VIH_{min} and VIH_{max} levels.

2. A device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIH_{min} of SCL signal) to bridge the undefined region of falling edge of SCL.

3. The maximum THD; DAT is only met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

4. Cb = Total capacitance of one bus line in pF

5 Register Description

5.1 Power Management

5.1.1 Register Map Summary

Register	Address	Description	Reset Value
PMIC_ID	0x00	PMIC ID Register	0x00
ONOFF INT1	0x01	On/OFF Interrupt 1 Register	0x00
ONOFF INT2	0x02	On/OFF Interrupt 2 Register	0x00
RTC INT3	0x03	RTC Interrupt Register	0x00
ONOFF INT1M	0x04	On/OFF Interrupt 1 Mask Register	0x00
ONOFF INT2M	0x05	On/OFF Interrupt 2 Mask Register	0x78
RTC INT3M	0x06	RTC Interrupt Mask Register	0x00
STATUS1	0x07	Status1 Register	N/A
STATUS2	0x08	Status 2 Register	N/A
RSVD	0X09	Reserved	N/A
CTRL1	0x0A	Control 1 Register	0x01
CTRL2 SI - DI	aza oxob ett	Control 2 Register . 14, 2011.12.	13 0x0E
RSVD	0x0C	Reserved	N/A
RSVD	0x0D	Reserved	N/A
BU_CHG	0x0E	Back-Up Charger Register	0x4F
DVS_RAMP	0x0F	DVS Ramp Register	0x90
RSVD	0x10	Reserved	N/A
RSVD	0x11	Reserved	N/A
RSVD	0x12	Reserved	N/A
LDO1	0x13	LDO1 Configuration Register	0x22
LDO2	0x14	LDO2 Configuration Register	0x22
LDO3	0x15	LDO3 Configuration Register	0x22
LDO4	0x16	LDO4 Configuration Register	0x22
LDO5	0x17	LDO5 Configuration Register	0x22
LDO6	0x18	LDO6 Configuration Register	0x22
LDO7	0x19	LDO7 Configuration Register	0x22
LDO8	0x1A	LDO8 Configuration Register	0x22
LDO9	0x1B	LDO9 Configuration Register	0x22

SAMSUNG ELECTRONICS

Register	Address	Description	Reset Value
LDO10	0x1C	LDO10 Configuration Register	0x22
LDO11	0x1D	LDO11 Configuration Register	0x22
LDO12	0x1E	LDO12 Configuration Register	0x22
LDO13	0x1F	LDO13 Configuration Register	0x22
LDO14	0x20	LDO14 Configuration Register	0x22
LDO15	0x21	LDO15 Configuration Register	0x22
LDO16	0x22	LDO16 Configuration Register	0x22
LDO17	0x23	LDO17 Configuration Register	0x22
LDO18	0x24	LDO18 Configuration Register	0x22
LDO19	0x25	LDO19 Configuration Register	0x22
LDO20	0x26	LDO20 Configuration Register	0x22
LDO21	0x27	LDO21 Configuration Register	0x22
LDO22	0x28	LDO22 Configuration Register	0x22
LDO23	0x29	LDO23 Configuration Register	0x22
LDO24	0x2A	LDO24 Configuration Register	0x22
LDO25	0x2B	LDO25 Configuration Register	0x22
LDO26	0x2C	LDO26 Configuration Register	0x22
LDO27	0x2D	LDO27 Configuration Register	0x22
LDO28	0x2E	LDO28 Configuration Register	0x22
RSVD	0x2F	Reserved	0x00
RSVD SI-D	aza _{0x30} en	Reserved 14.14,2011.12	0x00
UVLO	0x31	Under Voltage Lock Out Register	0x04
BUCK1_CTRL1	0x32	BUCK1 Control1 Register	0xD8
BUCK1_CTRL2	0x33	BUCK1 Control2 Register	0x38
BUCK2_CTRL	0x34	BUCK2 Control Register	0xFA
BUCK2_DVS1	0x35	BUCK2 DVS1 Register	0x50
BUCK2_DVS2	0x36	BUCK2 DVS2 Register	0x50
BUCK2_DVS3	0x37	BUCK2 DVS3 Register	0x50
BUCK2_DVS4	0x38	BUCK2 DVS4 Register	0x50
BUCK2_DVS5	0x39	BUCK2 DVS5 Register	0x50
BUCK2_DVS6	0x3A	BUCK2 DVS6 Register	0x50
BUCK2_DVS7	0x3B	BUCK2 DVS7 Register	0x50
BUCK2_DVS8	0x3C	BUCK2 DVS8 Register	0x50
BUCK3_CTRL	0x3D	BUCK3 Control Register	0xFA
BUCK3_DVS1	0x3E	BUCK3 DVS1 Register	0x40
BUCK3_DVS2	0x3F	BUCK3 DVS2 Register	0x40
BUCK3_DVS3	0x40	BUCK3 DVS3 Register	0x40

Register	Address	Description	Reset Value
BUCK3_DVS4	0x41	BUCK3 DVS4 Register	0x40
BUCK3_DVS5	0x42	BUCK3 DVS5 Register	0x40
BUCK3_DVS6	0x43	BUCK3 DVS6 Register	0x40
BUCK3_DVS7	0x44	BUCK3 DVS7 Register	0x40
BUCK3_DVS8	0x45	BUCK3 DVS8 Register	0x40
BUCK4_CTRL	0x46	BUCK4 Control Register	0xFA
BUCK4_DVS1	0x47	BUCK4 DVS1 Register	0x40
BUCK4_DVS2	0x48	BUCK4 DVS2 Register	0x40
BUCK4_DVS3	0x49	BUCK4 DVS3 Register	0x40
BUCK4_DVS4	0x4A	BUCK4 DVS4 Register	0x40
BUCK4_DVS5	0x4B	BUCK4 DVS5 Register	0x40
BUCK4_DVS6	0x4C	BUCK4 DVS6 Register	0x40
BUCK4_DVS7	0x4D	BUCK4 DVS7 Register	0x40
BUCK4_DVS8	0x4E	BUCK4 DVS8 Register	0x40
BUCK5_CTRL1	0x4F	BUCK5 Control1 Register	0xD8
BUCK5_CTRL2	0x50	BUCK5 DVS1 Register	0x58
BUCK5_CTRL3	0x51	BUCK5 DVS2 Register	0x70
BUCK5_CTRL4	0x52	BUCK5 DVS3 Register	0x88
BUCK5_CTRL2	0x53	BUCK5 DVS4 Register	0xB8
BUCK6_CTRL1	0x54	BUCK6 Control2 Register	0x18
BUCK6_CTRL2	aza _{0x55} en _	BUCK6 Control1 Register	О _{х58}
BUCK7_CTRL1	0x56	BUCK7 Control2 Register	0xD8
BUCK7_CTRL2	0x57	BUCK7 Control1 Register	0x64
BUCK8_CTRL1	0x58	BUCK8 Control2 Register	0xD8
BUCK8_CTRL2	0x59	BUCK8 Control1 Register	0x34
BUCK9_CTRL1	0x5A	BUCK9 Control2 Register	0x18
BUCK9_CTRL2	0x5B	BUCK9 Control1 Register	0xA8
LDO1_CTRL	0x5C	LDO1 Control Register	0xC8
LDO2_CTRL	0x5D	LDO2 Control Register	0xD0
LDO2_CTRL	0x5E	LDO2 Control Register	0x16
LDO2_CTRL	0x5F	LDO2 Control Register	0x1C
LDO2_CTRL	0x60	LDO2 Control Register	0x28
LDO3_CTRL	0x61	LDO3 Control Register	0XD4
LDO4_CTRL	0x62	LDO4 Control Register	0xD4
LDO5_CTRL	0x63	LDO5 Control Register	0XD4
LDO6_CTRL	0x64	LDO6 Control Register	0XC8
LDO7_CTRL	0x65	LDO7 Control Register	0XC8

Register	Address	Description	Reset Value
LDO8_CTRL	0x66	LDO8 Control Register	0XC8
LDO9_CTRL	0x67	LDO9 Control Register	0x2C
LDO10_CTRL	0x68	LDO10 Control Register	0XD4
LDO11_CTRL	0x69	LDO11 Control Register	0XD4
LDO12_CTRL	0x6A	LDO12 Control Register	0XEC
LDO13_CTRL	0x6B	LDO13 Control Register	0XD4
LDO14_CTRL	0x6C	LDO14 Control Register	0XD4
LDO15_CTRL	0x6D	LDO15 Control Register	0XC8
LDO16_CTRL	0x6E	LDO16 Control Register	0xD4
LDO17_CTRL	0x6F	LDO17 Control Register	0xE8
LDO18_CTRL	0x70	LDO18 Control Register	0x28
LDO19_CTRL	0x71	LDO19 Control Register	0x2C
LDO20_CTRL	0x72	LDO20 Control Register	0x2C
LDO21_CTRL	0x73	LDO21 Control Register	0x2C
LDO22_CTRL	0x74	LDO22 Control Register	0x32
LDO23_CTRL	0x75	LDO23 Control Register	0x28
LDO24_CTRL	0x76	LDO24 Control Register	0x2C
LDO25_CTRL	0 x77	LDO25 Control Register	0x08
LDO26_CTRL	0x78	LDO26 Control Register	0x14
LDO27_CTRL	0x79	LDO27 Control Register	0x14
LDO28_CTRL	aza _{0x7A} ren	LDO28 Control Register	0x14
PWRONSRC	0xE0	Power on source Register	N/A

5.1.2 Bit Map Summary

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	RSVD	RSVD	RSVD	RSVD		REV	/_ID	
0x01	RSVD	RSVD	JIGONBR	JIGONBF	PWR_ ON1S	RSVD	PWR_ ONF	PWR_ ONR
0x02	RSVD	RSVD	RSVD	RSVD	RSVD	MRB	ACOKBF	ACOKBR
0x03	RSVD	RSVD	WTSR	RTC_1S	SMPL	RTC_A2	RTC_A1	RTC_60S
0x04	RSVD	RSVD	JIG_ ONFM	JIG_ ONRM	PWR_ ON1SM	RSVD	PWR_ ONFM	PWR_ ONRM
0x05	RSVD	RSVD	RSVD	RSVD	RSVD	MRBM	ACOK BFM	ACOK BRM
0x06	RSVD	RSVD	WTSRM	RTC_1SM	SMPLM	RTC_A2M	RTC_ A1M	RTC_ 60SM
0x07	WTSR_ EVENT	SMPL_ EVENT	RTC_A2S	RTC_A1S	LOW_BA T2S	LOW_ BAT1S	JIG_ ONFS	PWR_ ONS
0x08	DVS_ SET3S	DVS_ SET2S	DVS_ SET1S	PWR_ ENS	RSVD	MR2BS	MR1BS	ACOKBS
0X09				R	SVD			
0x0A	RSVD	RSVD	RSVD	PWR HOLD	RSVD	32 KHz _EN	32 KHz CP_EN	32 KHz AP_EN
0x0B	RSVD	RSVD	RSVD	RSVD	MRSTB_ EM		MRDT	
0x0C		070 /	loff c	R	SVD	2011	10 10	
0x0D	51 - pr	aza /	Jen_c		SVD	2011.	12.13	
0x0E	OUT	[_R	LCHG_I	V_l	IM	CH	G_I	BU_EN
0x0F		BUC	K_RAMP		ENRAMP _B2	ENRAMP _B3	ENRAMP _B4	RSVD
0x10				R	SVD			
0x11				R	SVD			
0x12				R	SVD			
0x13	OVCB1	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH1	POK1 :Re ad only
0x14	OVCB2	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH2	POK2:Re ad only
0x15	OVCB3	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH3	POK3:Re ad only
0x16	OVCB4	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH4	POK4:Re ad only
0x17	OVCB5	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH5	POK5:Re ad only
0x18	OVCB6	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH6	POK6:Re ad only

SAMSUNG ELECTRONICS

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x19	OVCB7	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH7	POK7:Re ad only
0x1A	OVCB8	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH8	POK8:Re ad only
0x1B	OVCB9	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH9	POK9:Re ad only
0x1C	OVCB10	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH10	POK10:R ead only
0x1D	OVCB11	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH11	POK11:R ead only
0x1E	OVCB12	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH12	POK12:R ead only
0x1F	OVCB13	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH13	POK13:R ead only
0x20	OVCB14	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH14	POK14:R ead only
0x21	OVCB15	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH15	POK15:R ead only
0x22	OVCB16	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH16	POK16:R ead only
0x23	OVCB17	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH17	POK17:R ead only
0x24	OVCB18	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH18	POK18:R ead only
0x25	OVCB19	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH19	POK19:R ead only
0x26	OVCB20	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH20	POK20:R ead only
0x27	OVCB21	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH21	POK21:R ead only
0x28	OVCB22	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH22	POK22:R ead only
0x29	OVCB23	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH23	POK23:R ead only
0x2A	OVCB24	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH24	POK24:R ead only
0x2B	OVCB25	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH25	POK25:R ead only
0x2C	OVCB26	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH26	POK26:R ead only
0x2D	OVCB27	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH27	POK27:R ead only
0x2E	OVCB28	RSVD	RSVD	RSVD	RSVD	RSVD	DSCH28	POK28:R

Samsung Confidential

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
								ead only
0x2F	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x30	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x31	UVL	0_Н	UVL	.0_L	RSVD	RSVD	REG_	TIMING
0x32	BUCK	1_EN	RSVD	DSCH_B1	MOE)E_B1	RSVD	RSVD
0x33				VO_	CTRL			
0x34	BUCK	2_EN	REMOTE 2_EN	DSCH_B2	MOE	DE_B2	DVS_B2	RSVD
0x35				DVS	S_B21			
0x36				DVS	S_B22			
0x37				DVS	S_B23			
0x38				DVS	S_B24			
0x39				DVS	S_B25			
0x3A				DVS	S_B26			
0x3B				DVS	S_B27			
0x3C				DVS	S_B28			
0x3D	BUCK	3_EN	REMOTE 3_EN	DSCH_B3	MOE	DE_B3	DVS_B3	RSVD
0x3E				DVS	S_B31			
0x3F				DVS	S_B32			
0x40	si - nla	aza /	.leff (DVS	S_B33	2011	12 13	
0x41			001-0	DVS	S_B34	20111	12.10	
0x42				DVS	S_B35			
0x43				DVS	S_B36			
0x44				DVS	S_B37			
0x45				DVS	S_B38			
0x46	BUCK	4_EN	REMOTE 4_EN	DSCH_B4	MOE	DE_B4	DVS_B4	RSVD
0x47				DVS	S_B41			
0x48				DVS	S_B42			
0x49				DVS	S_B43			
0x4A				DVS	S_B44			
0x4B				DVS	S_B45			
0x4C				DVS	S_B46			
0x4D				DVS	S_B47			
0x4E				DVS	S_B48			
0x4F	Buck	5_EN	RSVD	DSCH_B5	MOE	DE_B5	RSVD	RSVD
0x50				DVS	S_B51			·

SAMSUNG ELECTRONICS

Samsung Confidential

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x51				DVS_B52					
0x52		DVS_B53							
0x53		DVS_B54							
0x54	Buck6	6_EN	RSVD	DSCH_B6	MOD	E_B6	RSVD	RSVD	
0x55				VO	CTRL				
0x56	Buck7	/_EN	RSVD	DSCH_B7	MOD	E_B7	RSVD	RSVD	
0x57				VO_	CTRL				
0x58	Buck8	B_EN	RSVD	DSCH_B8	MOD	E_B8	RSVD	RSVD	
0x59				VO_	CTRL				
0x5A	Buck9)_EN	RSVD	DSCH_B9	MOD	E_B9	RSVD	RSVD	
0x5B				VO_	_CTRL				
0x5C	LDO1	_EN			OUT	「_L1			
0x5D	LDO2	2_EN			OUT	_L2_1			
0x5E	RS	VD			OUT	_L2_2			
0x5F	RS	VD			OUT	_L2_3			
0x60	RS	VD			OUT	_L2_4			
0x61	LDO3	B_EN			OUT	[_L3			
0x62	LDO4	_EN			OUT	r_L4			
0x63	LDO5	5_EN			OUT	[_L5			
0x64	LDO6	6_EN			OUT	[_L6	10.10		
0x65	LD07	_EN	Jen_0	Jural		r_L7	12.13		
0x66	LDO8	B_EN			OUT	Г_L8			
0x67	LDO9	_EN			OUT	F_L9			
0x68	LDO1	0_EN			OUT	_L10			
0x69	LDO1 ²	1_EN			OUT	_L11			
0x6A	LDO12	2_EN			OUT	_L12			
0x6B	LDO1:	3_EN			OUT	_L13			
0x6C	LDO14	4_EN			OUT	_L14			
0x6D	LDO1	5_EN			OUT	_L15			
0x6E	LDO16	6_EN			OUT	_L16			
0x6F	LDO17	7_EN			OUT	_L17			
0x70	LDO18	8_EN			OUT	_L18			
0x71	LDO19	9_EN			OUT	_L19			
0x72	LDO2	0_EN			OUT	_L20			
0x73	LDO2 [,]	1_EN			OUT	_L21			
0x74	LDO22	2_EN			OUT	_L22			
0x75	LDO2	3_EN			OUT	_L23			

SAMSUNG ELECTRONICS

82

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x76	LDO24_EN		OUT_L24					
0x77	LDO2	5_EN			OUT	_L25		
0x78	LDO26_EN				OUT	_L26		
0x79	LDO2	7_EN			OUT	_L27		
0x7A	LDO2	8_EN	OUT_L28					
0xE0	RSVD	SMPL	ALARM2	ALARM1	MRST	ACOKB	JIGON	PWRON

SANSUNG si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

5.1.2.1 PMIC_ID

Address = 0x00, Reset Value = 0x00

Name	Bit	Туре	Description	Reset Value
RSVD	[7:4]	R	Reserved	0b0000
REV_ID	[3:0]	R	IC Revision ID	0b0000

5.1.2.2 ONOFF INT1

Address = 0x01, Reset Value = 0x00

Name	Bit	Туре	Description	Reset Value
RSVD	[7]	RC	Reserved	0b0
RSVD	[6]	RC	Reserved	0b0
JIGONBR	[5]	RC	1 = JIGONB rising edge detection (debounced)	0b0
JIGONBF	[4]	RC	1 = JIGONB falling edge detection (debounced)	0b0
PWR_ON1S	[3]	RC	1 = PWR_ON high for longer than 1 sec	0b0
RSVD	[2]	RC	Reserved	0b0
PWR_ONF	[1]	RC	1 = PWR_ON key falling edge detection (debounced)	0b0
PWR_ONR	[0]	RC	1 = PWR_ON key rising edge detection (debounced)	0b0

NOTE: All IRQ registers must be read at once (Not individually) because a user does not know which source will trigger an IRQ. SI - plaza / Jeff_cui at 14.14, 2011.12.13

5.1.2.3 ONOFF INT2

Address = 0x02, Reset Value = 0x00

Name	Bit	Туре	Description	Reset Value
RSVD	[7:6]	RC	Reserved	0b00
RSVD	[5]	RC	Reserved	0b0
RSVD	[4]	RC	Reserved	0b0
RSVD	[3]	RC	Reserved	0b0
MRB	[2]	RC	1 = MR1B and MR2B logic low for longer than manual reset debounce time	0b0
ACOKBF	[1]	RC	1 = ACOKB falling edge detection (debounced)	0b0
ACOKBR	[0]	RC	1 = ACOKB rising edge detection (debounced)	0b0

NOTE: All IRQ registers must be read at once (Not individually) because a user does not know which source will trigger an IRQ.

SAMSUNG ELECTRONICS

84

5.1.2.4 RTC INT3

Name	Bit	Туре	Description	Reset Value
RSVD	[7:6]	RC	Reserved	0b00
WTSR	[5]	RC	1 = WTSR event interrupt	0b0
RTC_1S	[4]	RC	1 = RTC periodic 1sec event	0b0
SMPL	[3]	RC	1 = SMPL interrupt to host controller	0b0
RTC_A2	[2]	RC	1 = RTC alarm 2	0b0
RTC_A1	[1]	RC	1 = RTC alarm 1	0b0
RTC_60S	[0]	RC	1 = RTC periodic 60sec event	0b0

NOTE: All IRQ registers must be read at once (Not individually) because a user does not know which source will trigger an IRQ.

5.1.2.5 ONOFF INT1M

• Address = 0x04, Reset Value = 0x00

Name	Bit	Туре	Description	Reset Value
RSVD	[7]	RW	Reserved	0b0
RSVD	[6]	RW	Reserved	0b0
jigonbfm ^{Si} -	р <mark>[5]</mark> Z	a _{rw} J	JIGONB falling event 0 = Not masked 1 = Masked	З _{ОЬО}
JIGONBRM	[4]	RW	JIGONB rising event 0 = Not masked 1 = Masked	0b0
PWR_On1SM	[3]	RW	PWR_ON 1sec vent 0 = Not masked 1 = Masked	0b0
RSVD	[2]	RW	Reserved	0b0
PWR_ONFM	[1]	RW	PWR_ON falling event 0 = Not masked 1 = Masked	0b0
PWR_ONRM	[0]	RW	PWR_ON rising vent 0 = Not masked 1 = Masked	060

SAMSUNG ELECTRONICS

85

5.1.2.6 ONOFF INT2M

Address = 0x05, Reset Value = 0x78

Name	Bit	Туре	Description	Reset Value
RSVD	[7:6]	RW	Reserved	0b01
RSVD	[5]	RW	Reserved	0b1
RSVD	[4]	RW	Reserved	0b1
RSVD	[3]	RW	Reserved	0b1
MRBM	[2]	RW	MR1B and MR2B event 0 = Not masked 1 = Masked	0b0
ACOKBFM	[1]	RW	ACOKB falling event 0 = Not masked 1 = Masked	0b0
ACOKBRM	[0]	RW	ACOKB rising event 0 = Not masked 1 = Masked	0b0

5.1.2.7 RTC INT3M

Address = 0x06, Reset Value = 0x00

Name	Bit	Туре	Description	Reset Value
RSVD	[7:6]	RW	Reserved	0b00
SI - WTSRM	plaz ^[5]	a / J _{RW}	WTSR event at 14 :14,2011.12.1 0 = Not masked 1 = Masked	З 0b0
RTC_1SM	[4]	RW	RTC periodic 1sec event 0 = Not masked 1 = Masked	0b0
SMPLM	[3]	RW	SMPL interrupt to host controller event 0 = Not masked 1 = Masked	0b0
RTC_A2M	[2]	RW	RTC alarm2 event 0 = Not masked 1 = Masked	0b0
RTC_A1M	[1]	RW	RTC alarm1 event 0 = Not masked 1 = Masked	0b0
RTC_60SM	[0]	RW	RTC periodic 60sec event 0 = Not masked 1 = Masked	0b0

SAMSUNG ELECTRONICS

5.1.2.8 STATUS1

• Address = 0x07, Reset Value = N/A

Name	Bit	Туре	Description	Reset Value
WTSR_EVENT	[7]	R	0 = WTSR event does not occur 1 = WTSR event does occur	N/A
SMPL_EVENT	[6]	R	0 = SMPL event does not occur 1 = SMPL event does occur	N/A
RTC_A2S	[5]	R	0 = RTC alarm2 is not reached 1 = RTC alarm2 is reached	N/A
RTC_A1S	[4]	R	0 = RTC alarm1 is not reached 1 = RTC alarm1 is reached	N/A
Low_BAT2S	[3]	R	 0 = Main battery voltage is below low battery voltage monitor 2 1 = Main battery voltage is above low battery voltage monitor 2 	N/A
Low_BAT1S	[2]	R	 0 = Main battery voltage is below low battery voltage monitor1 1 = Main battery voltage is above low battery voltage monitor1` 	N/A
JIGONBFS	[1]	R	0 = JIGONB falling is low (No input) 1 = JIGONB falling is high (Input present)	N/A
PWR_ONS	[0]	R	0 = PWR_ON is low (No input) 1 = PWR_ON is high (Input present)	N/A

NOTE: If the value is low (0), the register interrupt is enabled.

SAMSUNG ELECTRONICS

5.1.2.9 STATUS2

Address = 0x08, Reset Value = N/A

Name	Bit	Туре	Description	Reset Value
DVS_SET3S	[7]	R	0 = DVS_SET3 is low 1 = DVS_SET3 is high	N/A
DVS_SET2S	[6]	R	0 = DVS_SET2 is low 1 = DVS_SET2 is high	N/A
DVS_SET1S	[5]	R	0 = DVS_SET1 is low 1 = DVS_SET1 is high	N/A
PWR_ENS	[4]	R	0 = PWREN is low 1 = PWREN is high	N/A
RSVD	[3]	R	Reserved	N/A
MR2BS	[2]	R	0 = MR2B is low 1 = MR2B is high	N/A
MR1BS	[1]	R	0 = MR1B is low 1 = MR1B is high	N/A
ACOKbS	[0]	R	0 = ACOKb is low 1 = ACOKb is high	N/A

NOTE: If the value is low (0), the register interrupt is enabled.

5.1.2.10 RSVD

• Address = 0x09, Reset Value = N/A ff_CUI at 14:14,2011.12.13

Name	Bit	Туре	Description	Reset Value
RSVD	[7:0]	R	Reserved	N/A

NOTE: . If the value is low (0), the register interrupt is enabled.

SAMSUNG ELECTRONICS

5.1.2.11 CTRL1

Address = 0x0A, Reset Value = 0x01 •

Name	Bit	Туре	Description	Reset Value
RSVD	[7:5]	RW	Reserved	0b000
PWRHOLD	[4]	RW	Internal PWRHOLD logic and external PWRHOLD signal are ORed 0 = Internal PWRHOLD logic is low 1 = Internal PWRHOLD logic is high	0b0
RSVD	[3]	RW	Reserved	0b0
32KHzBT_EN	[1]	RW	0 = Turn 32 kHz BT on 1 = Turn 32 kHz BT off	0b0
32KHzCP_EN	[1]	RW	0 = Turn 32 kHz CP on 1 = Turn 32 kHz CP off	0b0
32KHzAP_EN	[0]	RW	0 = Turn 32 kHz AP on 1 = Turn 32 kHz AP off	0b1

5.1.2.12 CTRL2

5.1.2.12 CTRL2					
• Address = 0x0B	, Reset V	alue = 0x	0E		
Name	Bit	Туре	Description	Reset Value	
RSVD	[7:4]	RW	Reserved Reserved	Op0000	
MRSTB_EN	[3]	RW	0 = Manual Resetb disable 1 = Manual Resetb enable	0b1	
MRDT	[2:0]	RW	Manual Reset Debounce Timer when MR1B = MR2B = low $000 = 9 \sec 001 = 10 \sec 010 = 3 \sec 011 = 4 \sec 011 = 4 \sec 011 = 5 \sec 011 = 6 \sec 011 = 6 \sec 0110 = 7 \sec (Default)$ $111 = 8 \sec 000000000000000000000000000000000$	0b110	

5.1.2.13 RSVD

Address = 0x0C, Reset Value = 0xE7

Name	Bit	Туре	Description	Reset Value
RSVD	[7:0]	R	Reserved	N/A

SAMSUNG ELECTRONICS

5.1.2.14 RSVD

• Address = 0x0D, Reset Value = 0x87

Name	Bit	Туре	Description	Reset Value
RSVD	[7:0]	R	Reserved	N/A

5.1.2.15 BU_CHG

Address = 0x0E, Reset Value = 0x4F

Name	Bit	Туре	Description	Reset Value
OUT_R	[7:6]	RW	Output Resistor 00 = Bypass $01 = 1 k\Omega(Default)$ $10 = 3 k\Omega$ $11 = 6 k\Omega$	0b01
LCHG_I	[5]	RW	0 = Low charging current enable 1 = Low charging current disable	0b0
V_LIM	[4:3]	RW	Limit voltage setting 00 = 2.5 V 01 = 3.0 V (Default) 10 = 3.3 V 11 = 3.5 V	0b01
Si - CHG_I	plaz [2:1]	a / J	Charging current setting @LCHG_I = 0 $00 = 80 \ \mu A$ $01 = 80 \ \mu A$ $10 = 80 \ \mu A$ $11 = 100 \ \mu A$ (Default) @LCHG_I = 1 $00 = 200 \ \mu A$ $01 = 600 \ \mu A$ $10 = 800 \ \mu A$ $11 = 400 \ \mu A$	3 0b11
BU_EN	[0]	RW	0 = Backup battery charger off 1 = Backup battery charger on	0b1

SAMSUNG ELECTRONICS

5.1.2.16 DVS_RAMP

• Address = 0x0F, Reset Value = 0x90

Name	Bit	Туре	Description	Reset Value
BUCK_RAMP	[7:4]	RW	0100 = 5.00 mV/μs 1001 = 10.00 mV/μs (Default) 1101 = 25.00 mV/μs 1110 = 50.00 mV/μs 1111 = 100.00 mV/μs	0b1001
ENRAMP_B2	[3]	RW	Ramp Control ON/OFF for BUCK 2 0 = Turn Off Ramp Control (Max Ramp Rate) of BUCK 2 1 = Turn On Ramp Control of BUCK 2	0b0
ENRAMP_B3	[2]	RW	Ramp Control ON/OFF for BUCK3 0 = Turn Off Ramp Control (Max Ramp Rate) of BUCK 3 1 = Turn On Ramp Control of BUCK 3	0b0
ENRAMP_B4	[1]	RW	Ramp Control ON/OFF for BUCK 3 0 = Turn Off Ramp Control (Max Ramp Rate) of BUCK 3 1 = Turn On Ramp Control of BUCK 3	0b0
RSVD	[0]	RW	Reserved	0b0

si - plaza / Jeff_cui at 14:14,2011.12.13

5.1.2.17 RSVD

• Address = 0x10/0x11/0x12, Reset Value = 0x03

Name	Bit	Туре	Description	Reset Value
DVS_TEST	[7:0]	RW	Reserved	0b00000011

SAMSUNG ELECTRONICS

5.1.2.18 LDO1 to LDO28

• Address = 0x13 to 0x2E, Reset Value = 0x22

Name	Bit	Туре	Description	Reset Value
OVCB1 OVCB2 OVCB3 OVCB4 OVCB5 OVCB6 OVCB7 OVCB8 OVCB9 OVCB10 OVCB10 OVCB11 OVCB12 OVCB12 OVCB13 OVCB14 OVCB15 OVCB15 OVCB16 OVCB17 OVCB18 OVCB17 OVCB18 OVCB19 OVCB20 OVCB21 OVCB21 OVCB22 OVCB23 OVCB23 OVCB24 OVCB25 OVCB26 OVCB27 OVCB28	[7]	RW	Over-voltage Clamp Enable 0 = Enable 1 = Disable MASSUNG eff_cui at 14:14,2011.12.	ob0
RSVD	[6:2]	RW	Reserved	0601000

SAMSUNG ELECTRONICS

Name	Bit	Туре	Description	Reset Value
DSCH1 DSCH2 DSCH3 DSCH4 DSCH5 DSCH6 DSCH7 DSCH8 DSCH9 DSCH10 DSCH10 DSCH11 DSCH12 DSCH12 DSCH13 DSCH14 DSCH15 DSCH15 DSCH16 DSCH17 DSCH18 DSCH17 DSCH18 DSCH19 DSCH20 DSCH21 DSCH21 DSCH21 DSCH22 DSCH23 DSCH24 DSCH25 SI - [[1]	RW	Active Discharge Enable 0 = Disable 1 = Enable MSUNG eff_cui at 14:14,2011.12.	0Ь1
POK1: Read only POK2: Read only POK3: Read only POK4: Read only POK5: Read only POK6: Read only POK6: Read only POK7: Read only POK8: Read only POK9: Read only POK10: Read only POK11: Read only POK12: Read only POK13: Read only POK14: Read only POK14: Read only	[0]	RW	LDO output voltage OK flag bit 0 = LDO output is less than 90 % of target output voltage (POK threshold), and the device is operating in normal mode. 1 = LDO output is higher than the POK threshold, or LDO is operating in low-power mode, or the device is disabled.	0b0

Name	Bit	Туре	Description	Reset Value
POK16: Read only				
POK17: Read only				
POK18: Read only				
POK19: Read only				
POK20: Read only				
POK21: Read only				
POK22: Read only				
POK23: Read only				
POK24: Read only				
POK25: Read only				
POK26: Read only				
POK27: Read only				
POK28: Read only				

5.1.2.19 RSVD

Address = 0x2F/0x30, Reset Value = 0x00

Name	Bit	Туре	Description	Reset Value
RSVD	[7:0]	RW	Reserved	0b0000000

si - plaza / Jeff_cui at 14:14,2011.12.13

• Address = 0x31, Reset Value = 0x04

Name	Bit	Туре	Description	Reset Value
UVLO_H	[7:6]	RW	UVLO Rising Level Trimming	0b00
UVLO_L	[5:4]	RW	UVLO Falling Level Trimming	0b00
RSVD	[3]	RW	Reserved	0b0
RSVD	[2]	RW	Reserved	0b1
REG_TIMING	[1:0]	RW	Regulator Timing Trimming	0b00

SAMSUNG ELECTRONICS

5.1.2.21 BUCK1_CTRL1

• Address = 0x32, Reset Value = 0xD8

Name	Bit	Туре	Description	Reset Value
BUCK1_EN	[7:6]	RW	BUCK1 enable control 00 = Always off 01 = On/off by PWREN (High: On, Low: Off) 1x = Always on (Default)	0b11
RSVD	[5]	RW	Reserved	0b0
DSCH_B1	[4]	RW	Active Discharge of SW1 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B1	[3:2]	RW	Mode Control 10 = Auto mode (Default) 11 = Forced PWM	0b10
RSVD	[1]	RW	Reserved	0b0
RSVD	[0]	RW	Reserved	0b0

5.1.2.22 BUCK1_CTRL2

• Address = 0x33, Reset Value = 0x38

Name	Bit	Туре	Description	Reset Value
VO_CTRL	[7:0]	RW	BUCK 1 Output Voltage Control 8-bit Programmable from 0.65 V to 2.225 V in 6.25 mV steps	0b00111000

SAMSUNG ELECTRONICS

5.1.2.23 BUCK2_CTRL

• Address = 0x34, Reset Value = 0xFA

Name	Bit	Туре	Description	Reset Value
BUCK2_EN	[7:6]	RW	BUCK2 enable control 00 = Always off 01 = On/off by PWREN (High: On, Low: Off) 10 = Reserved 11 = Always on (Default)	0b11
REMOTE2_EN	[5]	RW	0 = Turn Remote2_sense Off 1 = Turn Remote2_sense On (Default)	0b1
DSCH_B2	[4]	RW	Active Discharge of SW2 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B2	[3:2]	RW	Mode Control 10 = Auto mode (Default) 11 = Forced PWM	0b10
DVS_B2	[1]	RW	DVS Control 0 = DVS Off 1 = DVS On (Output Voltage is chosen by SET1, SET2 and SET3)	0b1
RSVD	[0]	RW	Reserved	0b0

si - plaza / Jeff_cui at 14:14,2011.12.13

5.1.2.24 BUCK2_DVS1 to BUCK2_DVS8

• Address = 0x35 to 0x3C, Reset Value = 0x50

Name	Bit	Туре	Description	Reset Value
DVS_B21 DVS_B22 DVS_B23 DVS_B24	[7:0]	RW	BUCK2 DVS Output Voltage Option 8-bit Programmable from 0.6 V to 1.6 V in 6.25 mV	0601010000
DVS_B25 DVS_B26 DVS_B27 DVS_B28			steps	

SAMSUNG ELECTRONICS

5.1.2.25 BUCK3_CTRL

• Address = 0x3D, Reset Value = 0xFA

Name	Bit	Туре	Description	Reset Value
BUCK3_EN	[7:6]	RW	BUCK 3 enable control 00 = Always off 01 = On/off by PWREN (High:On, Low:Off) 10 = Reserved 11 = Always on (Default)	0b11
REMOTE3_EN	[5]	RW	0 = Turn Remote3_sense Off 1 = Turn Remote3_sense On (Default)	0b1
DSCH_B3	[4]	RW	Active Discharge of SW3 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B3	[3:2]	RW	Mode Control 10 = Auto Mode (Default) 11 = Forced PWM	0b10
DVS_B3	[1]	RW	Dvs Control 0 = DVS Off 1 = DVS On (Output voltage is chosen by SET1, SET2 and SET3)	Ob1
RSVD	[0]	RW	Reserved	0b0

si - plaza / Jeff_cui at 14:14,2011.12.13

5.1.2.26 BUCK3_DVS1 to BUCK3_DVS8

• Address = 0x3E to 0x45, Reset Value = 0x40

Name	Bit	Туре	Description	Reset Value
DVS_B31				
DVS_B32	[7:0]			
DVS_B33				
DVS_B34		RW	BUCK 3 DVS Output Voltage Option	0601000000
DVS_B35		R V V	8-bit Programmable from 0.6 V to 1.6 V in 6.25 mV steps	00000010000
DVS_B36			steps	
DVS_B37				
DVS_B38				

SAMSUNG ELECTRONICS

5.1.2.27 BUCK4_CTRL

• Address = 0x46, Reset Value = 0xFA

Name	Bit	Туре	Description	Reset Value
BUCK4_EN	[7:6]	RW	BUCK4 enable control 00 = Always off 01 = On/off by PWREN (High:On, Low:Off) 10 = Reserved 11 = Always on (Default)	0b11
REMOTE4_EN	[5]	RW	0 = Turn Remote4_sense Off 1 = Turn Remote4_sense On (Default)	0b1
DSCH_B4	[4]	RW	Active Discharge of SW4 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B4	[3:2]	RW	Mode Control 10 = Auto mode (Default) 11 = Forced PWM	0b10
DVS_B4	[1]	RW	DVS Control 0 = DVS Off 1 = DVS On (Output Voltage is chosen by SET1, SET2 and SET3)	Ob1
RSVD	[0]	RW	Reserved	0b0

si - plaza / Jeff_cui at 14:14,2011.12.13

5.1.2.28 BUCK4_DVS1 to BUCK4_DVS8

• Address = 0x47 to 0x4E, Reset Value = 0x40

Name	Bit	Туре	Description	Reset Value
DVS_B41 DVS_B42 DVS_B43 DVS_B44 DVS_B45 DVS_B46 DVS_B47	[7:0]	RW	BUCK 4 DVS Output Voltage Option 8-bit Programmable from 0.6 V to 1.6 V in 6.25 mV steps	0b01000000
DVS_B48				

SAMSUNG ELECTRONICS

5.1.2.29 BUCK5_CTRL1

• Address = 0x4F, Reset Value = 0xD8

Name	Bit	Туре	Description	Reset Value
BUCK5_EN	[7:6]	RW	BUCK 5 enable control 00 = Always off 01 = On/off by PWREN (High: On, Low: Off) 10 = Enter low power mode by PWREN(High: Normal, Low:Low-Power) 11 = Always on (Default)	0b11
RSVD	[5]	RW	Reserved	0b0
DSCH_B5	[4]	RW	Active Discharge of SW5 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B5	[3:2]	RW	Mode Control 10 = Auto mode (Default) 11 = Forced PWM	0b10
RSVD	[1]	RW	Reserved	0b0
RSVD	[0]	RW	Reserved	0b0

5.1.2.30 BUCK5_DVS1

• Address = 0x50, Reset Value = 0x58 _____ CUI at 14:14,2011.12.13

Name	Bit	Туре	Description	Reset Value
DVS_B51	[7:0]	RW	BUCK 5 DVS Output Voltage Option 8-bit Programmable from 0.65 V to 2.225 V in 6.25 mV steps	0b01011000

5.1.2.31 BUCK5_DVS2

• Address = 0x51, Reset Value = 0x70

Name	Bit	Туре	Description	Reset Value
DVS_B52	[7:0]	RW	BUCK5 DVS Output Voltage Option 8-bit Programmable from 0.65 V to 2.225 V in 6.25 mV steps	0b01110000

SAMSUNG ELECTRONICS

99

5.1.2.32 BUCK5_DVS3

• Address = 0x52, Reset Value = 0x88

Name	Bit	Туре	Description	Reset Value
DVS_B53	[7:0]	RW	BUCK5 DVS Output Voltage Option 8-bit Programmable from 0.65 V to 2.225 V in 6.25 mV steps	0b10001000

5.1.2.33 BUCK5_DVS4

• Address = 0x53, Reset Value = 0xB8

Name	Bit	Туре	Description	Reset Value
DVS_B54	[7:0]	RW	BUCK5 DVS Output Voltage Option 8-bit Programmable from 0.65 V to 2.225 V in 6.25 mV steps	0b10111000

5.1.2.34 BUCK6_CTRL1

• Address = 0x54, Reset Value = 0x18

Name	Bit	Туре	Description	Reset Value
BUCK6_EN	[7:6] İ – P	RW	BUCK6 enable control 00 = Always off (Default) 01 = On/off by BUCK6EN (High:On, Low:Off) 1x = Always on	0ь00
RSVD	[5]	RW	Reserved	0b0
DSCH_B6	[4]	RW	Active Discharge of SW6 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B6	[3:2]	RW	Mode Control 10 = Auto mode (Default) 11 = Forced PWM	0b10
RSVD	[1]	RW	Reserved	0b0
RSVD	[0]	RW	Reserved	0b0

SAMSUNG ELECTRONICS

5.1.2.35 BUCK6_CTRL2

• Address = 0x55, Reset Value = 0x58

Name	Bit	Туре	Description	Reset Value
VO_CTRL	[7:0]	RW	BUCK6 Output Voltage Option 8-bit Programmable from 0.65 V to 2.225 V in 6.25 mV steps	0b01011000

5.1.2.36 BUCK7_CTRL1

• Address = 0x56, Reset Value = 0xD8

Name	Bit	Туре	Description	Reset Value
BUCK7_EN	[7:6]	RW	BUCK 7 enable control 00 = Always off 01 = On/off by PWREN (High:On, Low:Off) 1x = Always on (Default)	0b11
RSVD	[5]	RW	Reserved	0b0
DSCH_B7	[4]	RW	Active Discharge of SW7 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B7	[3:2]	RW	Mode Control 10= Auto mode (Default) 11= Forced PWM	0b10
RSVD SI -	[1]	a _{RW} J	Reserved Uncat 14.14,2011.12.1	0b0
RSVD	[0]	RW	Reserved	0b0

5.1.2.37 BUCK7_CTRL2

• Address = 0x57, Reset Value = 0x64

Name	Bit	Туре	Description	Reset Value
VO_CTRL	[7:0]	RW	BUCK 7 Output Voltage Control 8-bit Programmable from 0.75 V to 3.0 V in 12.5 mV steps	0b01100100

SAMSUNG ELECTRONICS

5.1.2.38 BUCK8_CTRL1

• Address = 0x58, Reset Value = 0xD8

Name	Bit	Туре	Description	Reset Value
BUCK8_EN	[7:6]	RW	BUCK8 enable control 00 = Always off 01 = On/off by PWREN (High: On, Low: Off) 1x = Always on (Default)	0b11
RSVD	[5]	RW	Reserved	0b0
DSCH_B8	[4]	RW	Active Discharge of SW8 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B8	[3:2]	RW	Mode Control 10 = Auto mode (Default) 11 = Forced PWM	0b10
RSVD	[1]	RW	Reserved	0b0
RSVD	[0]	RW	Reserved	0b0

5.1.2.39 BUCK8_CTRL2

• Address = 0x59, Reset Value = 0x34

Name	Bit	Туре	Description	Reset Value
VO_CTRL	[7:0]	RW	BUCK 8 Output Voltage Control 8-bit Programmable from 0.75 V to 3.0V in 12.5 mV steps	Ob00110100

SAMSUNG ELECTRONICS

5.1.2.40 BUCK9_CTRL1

• Address = 0x5A, Reset Value = 0x18

Name	Bit	Туре	Description	Reset Value
BUCK9_EN	[7:6]	RW	BUCK 9 enable control 00 = Always off (Default) 01 = On/off by BUCK9EN (High:On, Low:Off) 1x = Always on	0Ь00
RSVD	[5]	RW	Reserved	0b0
DSCH_B9	[4]	RW	Active Discharge of SW9 0 = No Active Discharge 1 = Active Discharge (Default)	0b1
MODE_B9	[3:2]	RW	Mode Control 10 = Auto mode (Default) 11 = Forced PWM	0b10
RSVD	[1]	RW	Reserved	0b0
RSVD	[0]	RW	Reserved	0b0

5.1.2.41 BUCK9_CTRL2

• Address = 0x5B, Reset Value = 0xA8

Name	Bit	Туре	Description	Reset Value
VO_CTRL	[7:0]	RW	BUCK9 Output Voltage Control 8-bit Programmable from 0.75 V to 3.0V in 12.5 mV steps	Ob10101000

SAMSUNG ELECTRONICS

		6			
0x00 = 0.60000	0x20 = 0.80000	0x40 = 1.00000	0x60 = 1.20000	0x80 = 1.40000	0xA0 = 1.60000
0x01 = 0.60625	0x21 = 0.80625	0x41 = 1.00625	0x61 = 1.20625	0x81 = 1.40625	
0x02 = 0.61250	0x22 = 0.81250	0x42 = 1.01250	0x62 = 1.21250	0x82 = 1.41250	
0x03 = 0.61875	0x23 = 0.81875	0x43 = 1.01875	0x63 = 1.21875	0x83 = 1.41875	
0x04 = 0.62500	0x24 = 0.82500	0x44 = 1.02500	0x64 = 1.22500	0x84 = 1.42500	
0x05 = 0.63125	0x25 = 0.83125	0x45 = 1.03125	0x65 = 1.23125	0x85 = 1.43125	
0x06 = 0.63750	0x26 = 0.83750	0x46 = 1.03750	0x66 = 1.23750	0x86 = 1.43750	
0x07 = 0.64375	0x27 = 0.84375	0x47 = 1.04375	0x67 = 1.24375	0x87 = 1.44375	
0x08 = 0.65000	0x28 = 0.85000	0x48 = 1.05000	0x68 = 1.25000	0x88 = 1.45000	
0x09 = 0.65625	0x29 = 0.85625	0x49 = 1.05625	0x69 = 1.25625	0x89 = 1.45625	
0x0A = 0.66250	0x2A = 0.86250	0x4A = 1.06250	0x6A = 1.26250	0x8A = 1.46250	
0x0B = 0.66875	0x2B = 0.86875	0x4B = 1.06875	0x6B = 1.26875	0x8B = 1.46875	
0x0C = 0.67500	0x2C = 0.87500	0x4C = 1.07500	0x6C = 1.27500	0x8C = 1.47500	
0x0D = 0.68125	0x2D = 0.88125	0x4D = 1.08125	0x6D = 1.28125	0x8D = 1.48125	
0x0E = 0.68750	0x2E = 0.88750	0x4E = 1.08750	0x6E = 1.28750	0x8E = 1.48750	
0x0F = 0.69375	0x2F = 0.89375	0x4F = 1.09375	0x6F = 1.29375	0x8F = 1.49375	
0x10 = 0.70000	0x30 = 0.90000	0x50 = 1.10000	0x70 = 1.30000	0x90 = 1.50000	
0x11 = 0.70625	0x31 = 0.90625	0x51 = 1.10625	0x71 = 1.30625	0x91 = 1.50625	
0x12 = 0.71250	0x 32 = 0.91250	0x52 = 1.11250	0 x72 = 1.31250	0x92 = 1.51250	
0x13 = 0.71875	0x33 = 0.91875	0x53 = 1.11875	0x73 = 1.31875	0x93 = 1.51875	0
0x14 = 0.72500	0x34 = 0.92500	0x54 = 1.12500	0x74 = 1.32500	0x94 = 1.52500	D
0x15 = 0.73125	0x35 = 0.93125	0x55 = 1.13125	0x75 = 1.33125	0x95 = 1.53125	
0x16 = 0.73750	0x36 = 0.93750	0x56 = 1.13750	0x76 = 1.33750	0x96 = 1.53750	
0x17 = 0.74375	0x37 = 0.94375	0x57 = 1.14375	0x77 = 1.34375	0x97 = 1.54375	
0x18 = 0.75000	0x38 = 0.95000	0x58 = 1.15000	0x78 = 1.35000	0x98 = 1.55000	
0x19 = 0.75625	0x39 = 0.95625	0x59 = 1.15625	0x79 = 1.35625	0x99 = 1.55625	
0x1A = 0.76250	0x3A = 0.96250	0x5A = 1.16250	0x7A = 1.36250	0x9A = 1.56250	
0x1B = 0.76875	0x3B = 0.96875	0x5B = 1.16875	0x7B = 1.36875	0x9B = 1.56875	
0x1C = 0.77500	0x3C = 0.97500	0x5C = 1.17500	0x7C = 1.37500	0x9C = 1.57500	
0x1D = 0.78125	0x3D = 0.98125	0x5D = 1.18125	0x7D = 1.38125	0x9D = 1.58125	
0x1E = 0.78750	0x3E = 0.98750	0x5E = 1.18750	0x7E = 1.38750	0x9E = 1.58750	
0x1F = 0.79375	0x3F = 0.99375	0x5F = 1.19375	0x7F = 1.39375	0x9F = 1.59375	
·	•	•			•

Table 5 Voltage Table for BUCK 2/3/4

Preliminary product information describes products that are in development, for which full characterization data and associated errata are not yet available. Specifications and information herein are subject to change without notice.

104

0x00= 0.65000	0x20 = 0.85000	0x40 = 1.05000	0x60 = 1.25000	0x80 = 1.45000	0xA0 = 1.65000	0xC0 = 1.85000	0xE0 = 2.05000
0x01 = 0.65625	0x21 = 0.85625	0x41 = 1.05625	0x61 = 1.25625	0x81 = 1.45625	0xA1 = 1.65625	0xC1 = 1.85625	0xE1 = 2.05625
0x02 = 0.66250	0x22 = 0.86250	0x42 = 1.06250	0x62 = 1.26250	0x82 = 1.46250	0xA2 = 1.66250	0xC2 = 1.86250	0xE2 = 2.06250
0x03 = 0.66875	0x23 = 0.86875	0x43 = 1.06875	0x63 = 1.26875	0x83 = 1.46875	0xA3 = 1.66875	0xC3 = 1.86875	0xE3 = 2.06875
0x04 = 0.67500	0x24 = 0.87500	0x44 = 1.07500	0x64 = 1.27500	0x84 = 1.47500	0xA4 = 1.67500	0xC4 = 1.87500	0xE4 = 2.07500
0x05 = 0.68125	0x25 = 0.88125	0x45 = 1.08125	0x65 = 1.28125	0x85 = 1.48125	0xA5 = 1.68125	0xC5 = 1.88125	0xE5 = 2.08125
0x06 = 0.68750	0x26 = 0.88750	0x46 = 1.08750	0x66 = 1.28750	0x86 = 1.48750	0xA6 = 1.68750	0xC6 = 1.88750	0xE6 = 2.08750
0x07 = 0.69375	0x27 = 0.89375	0x47 = 1.09375	0x67 = 1.29375	0x87 = 1.49375	0xA7 = 1.69375	0xC7 = 1.89375	0xE7 = 2.09375
0x08 = 0.70000	0x28 = 0.90000	0x48 = 1.10000	0x68 = 1.30000	0x88 = 1.50000	0xA8 = 1.70000	0xC8 = 1.90000	0xE8 = 2.10000
0x09 = 0.70625	0x29 = 0.90625	0x49 = 1.10625	0x69 = 1.30625	0x89 = 1.50625	0xA9 = 1.70625	0xC9 = 1.90625	0xE9 = 2.10625
0x0A = 0.71250	0x2A = 0.91250	0x4A = 1.11250	0x6A = 1.31250	0x8A = 1.51250	0xAA = 1.71250	0xCA = 1.91250	0xEA = 2.11250
0x0B = 0.71875	0x2B = 0.91875	0x4B = 1.11875	0x6B = 1.31875	0x8B = 1.51875	0xAB = 1.71875	0xCB = 1.91875	0xEB = 2.11875
0x0C = 0.72500	0x2C = 0.92500	0x4C = 1.12500	0x6C = 1.32500	0x8C = 1.52500	0xAC = 1.72500	0xCC = 1.92500	0xEC = 2.12500
0x0D = 0.73125	0x2D = 0.93125	0x4D = 1.13125	0x6D = 1.33125	0x8D = 1.53125	0xAD = 1.73125	0xCD = 1.93125	0xED = 2.13125
0x0E = 0.73750	0x2E = 0.93750	0x4E = 1.13750	0x6E = 1.33750	0x8E = 1.53750	0xAE = 1.73750	0xCE = 1.93750	0xEE = 2.13750
0x0F = 0.74375	0x2F = 0.94375	0x4F = 1.14375	0x6F = 1.34375	0x8F = 1.54375	0xAF = 1.74375	0xCF = 1.94375	0xEF = 2.14375
0x10 = 0.75000	0x30 = 0.95000	0x50 = 1.15000	0x70 = 1.35000	0x90 = 1.55000	0xB0 = 1.75000	0xD0 = 1.95000	0xF0 = 2.15000
0x11 = 0.75625	0x31 = 0.95625	0x51 = 1.15625	0x71 = 1.35625	0x91 = 1.55625	0xB1 = 1.75625	0xD1 = 1.95625	0xF1 = 2.15625
0x12 = 0.76250	0x32 = 0.96250	0x52 = 1.16250	0x 72 = 1.36250	0x92 = 1.56250	0xB2 = 1.76250	0xD2 = 1.96250	0xF2 = 2.16250
0x13 = 0.76875	0x33 = 0.96875	0x53 = 1.16875	0x73 = 1.36875	0x93 = 1.56875	0xB3 = 1.76875	0xD3 = 1.96875	0xF3 = 2.16875
0x14 = 0.77500	0x34 = 0.97500	0x54 = 1.17500	0x74 = 1.37500	0x94 = 1.57500	0xB4 = 1.77500	0xD4 = 1.97500	0xF4 = 2.17500
0x15 = 0.78125	0x35 = 0.98125	0x55 = 1.18125	0x75 = 1.38125	0x95 = 1.58125	0xB5 = 1.78125	0xD5 = 1.98125	0xF5 = 2.18125
0x16 = 0.78750	0x36 = 0.98750	0x56 = 1.18750	0x76 = 1.38750	0x96 = 1.58750	0xB6 = 1.78750	0xD6 = 1.98750	0xF6 = 2.18750
0x17 = 0.79375	0x37 = 0.99375	0x57 = 1.19375	0x77 = 1.39375	0x97 = 1.59375	0xB7 = 1.79375	0xD7 = 1.99375	0xF7 = 2.19375
0x18 = 0.80000	0x38 = 1.0	0x58 = 1.2	0x78 = 1.40000	0x98 = 1.60000	0xB8 = 1.80000	0xD8 = 2.00000	0xF8 = 2.20000
0x19 = 0.80625	0x39 = 1.00625	0x59 = 1.20625	0x79 = 1.40625	0x99 = 1.60625	0xB9 = 1.80625	0xD9 = 2.00625	0xF9 = 2.20625
0x1A = 0.81250	0x3A = 1.01250	0x5A = 1.21250	0x7A = 1.41250	0x9A = 1.61250	0xBA = 1.81250	0xDA = 2.01250	0xFA = 2.21250
0x1B = 0.81875	0x3B = 1.01875	0x5B = 1.21875	0x7B = 1.41875	0x9B = 1.61875	0xBB = 1.81875	0xDB = 2.01875	0xFB = 2.21875
0x1C = 0.82500	0x3C = 1.02500	0x5C = 1.22500	0x7C = 1.42500	0x9C = 1.62500	0xBC = 1.82500	0xDC = 2.02500	0xFC = 2.22500
0x1D = 0.83125	0x3D = 1.03125	0x5D = 1.23125	0x7D = 1.43125	0x9D = 1.63125	0xBD = 1.83125	0xDD = 2.03125	
0x1E = 0.83750	0x3E = 1.04750	0x5E = 1.23750	0x7E = 1.43750	0x9E = 1.63750	0xBE = 1.83750	0xDE = 2.03750	
0x1F = 0.84375	0x3F = 1.04375	0x5F = 1.24375	0x7F = 1.44375	0x9F = 1.64375	0xBF = 1.84375	0xDF = 2.04375	

Table 6 Voltage Table for BUCK1/5/6

		0			
0x00 = 0.7500	0x20 = 1.1500	0x40 = 1.5500	0x60 = 1.9500	0x80 = 2.3500	0xA0 = 2.7500
0x01 = 0.7625	0x21 = 1.1625	0x41 = 1.5625	0x61 = 1.9625	0x81 = 2.3625	0xA1 = 2.7625
0x02 = 0.7750	0x22 = 1.1750	0x42 = 1.5750	0x62 = 1.9750	0x82 = 2.3750	0xA2 = 2.7750
0x03 = 0.7875	0x23 = 1.1875	0x43 = 1.5875	0x63 = 1.9875	0x83 = 2.3875	0xA3 = 2.7875
0x04 = 0.8000	0x24 = 1.2000	0x44 = 1.6000	0x64 = 2.0000	0x84 = 2.4000	0xA4 = 2.8000
0x05 = 0.8125	0x25 = 1.2125	0x45 = 1.6125	0x65 = 2.0125	0x85 = 2.4125	0xA5 = 2.8125
0x06 = 0.8250	0x26 = 1.2250	0x46 = 1.6250	0x66 = 2.0250	0x86 = 2.4250	0xA6 = 2.8250
0x07 = 0.8375	0x27 = 1.2375	0x47 = 1.6375	0x67 = 2.0375	0x87 = 2.4375	0xA7 = 2.8375
0x08 = 0.8500	0x28 = 1.2500	0x48 = 1.6500	0x68 = 2.0500	0x88 = 2.4500	0xA8 = 2.85
0x09 = 0.8625	0x29 = 1.2625	0x49 = 1.6625	0x69 = 2.0625	0x89 = 2.4625	0xA9 = 2.8625
0x0A = 0.8750	0x2A = 1.2750	0x4A = 1.6750	0x6A = 2.0750	0x8A = 2.4750	0xAA = 2.8750
0x0B = 0.8875	0x2B = 1.2875	0x4B = 1.6875	0x6B = 2.0875	0x8B = 2.4875	0xAB = 2.8875
0x0C = 0.9000	0x2C = 1.3000	0x4C = 1.7000	0x6C = 2.1000	0x8C = 2.5000	0xAC = 2.9000
0x0D = 0.9125	0x2D = 1.3125	0x4D = 1.7125	0x6D = 2.1125	0x8D = 2.5125	0xAD = 2.9125
0x0E = 0.9250	0x2E = 1.3250	0x4E = 1.7250	0x6E = 2.1250	0x8E = 2.5250	0xAE = 2.9250
0x0F = 0.9375	0x2F = 1.3375	0x4F = 1.7375	0x6F = 2.1375	0x8F = 2.5375	0xAF = 2.9375
0x10 = 0.9500	0x30 = 1.3500	0x50 = 1.7500	0x70 = 2.1500	0x90 = 2.5500	0xB0 = 2.9500
0x11 = 0.9625	0x31 = 1.3625	0x 51 = 1 .7625	0x71 = 2.1625	0x91 = 2.5625	0xB1 = 2.9625
0x12 = 0.9750	0x 32 = 1.3750	0x52 = 1.7750	0x72 = 2.1750	0x92 = 2.5750	0xB2 = 2.9750
0x13 = 0.9875	0x33 = 1.3875	0x53 = 1.7875	0x73 = 2.1875	0x93 = 2.5875	0xB3 = 2.9875
0x14 = 1.0000	0x34 = 1.4000	0x54 = 1.8000	0x74 = 2.2000	0x94 = 2.6000	0xB4 = 3.0000
0x15 = 1.0125	0x35 = 1.4125	0x55 = 1.8125	0x75 = 2.2125	0x95 = 2.6125	
0x16 = 1.0250	0x36 = 1.4250	0x56 = 1.8250	0x76 = 2.2250	0x96 = 2.6250	
0x17 = 1.0375	0x37 = 1.4375	0x57 = 1.8375	0x77 = 2.2375	0x97 = 2.6375	
0x18 = 1.0500	0x38 = 1.4500	0x58 = 1.8500	0x78 = 2.2500	0x98 = 2.6500	
0x19 = 1.0625	0x39 = 1.4625	0x59 = 1.8625	0x79 = 2.2625	0x99 = 2.6625	
0x1A = 1.0750	0x3A = 1.4750	0x5A = 1.8750	0x7A = 2.2750	0x9A = 2.6750	
0x1B = 1.0875	0x3B = 1.4875	0x5B = 1.8875	0x7B = 2.2875	0x9B = 2.6875	
0x1C = 1.1000	0x3C = 1.5000	0x5C = 1.9000	0x7C = 2.3000	0x9C = 2.7000	
0x1D = 1.1125	0x3D = 1.5125	0x5D = 1.9125	0x7D = 2.3125	0x9D = 2.7125	
0x1E = 1.1250	0x3E = 1.5250	0x5E = 1.9250	0x7E = 2.3250	0x9E = 2.7250	
0x1F = 1.1375	0x3F = 1.5375	0x5F = 1.9375	0x7F = 2.3375	0x9F = 2.7375	
	•	•	•	•	•

Table 7 Voltage Table for BUCK7/8/9

SAMSUNG ELECTRONICS

5.1.2.42 N-type LDO_CTRL

- LDO1: Address = 0x5C, Reset Value = 0xC8
- LDO2: Address = 0x5D, Reset Value = 0XD0
- LDO6: Address = 0x64, Reset Value = 0xC8
- LDO7: Address = 0x65, Reset Value = 0xC8
- LDO8: Address = 0x66, Reset Value = 0xC8
- LDO15: Address = 0x6D, Reset Value = 0xC8

Name	Bit	Туре		Dese	cription		Reset Value	
LDO_EN	[7:6]	RW	00 = Output off 01 = Output or PWRE PWRE 10 = Output is PWRE PWRE	 DO enable control 0 = Output off (regardless of PWREN) 01 = Output on/off controlled by PWREN PWREN = 1: Output is on in normal mode. PWREN = 0: Output is off 0 = Output is on, and its mode changed by PWREN PWREN = 1: Normal mode PWREN = 0: Low-power mode 1 = Output is on in Normal mode (regardless of PWREN) 				
OUT_L1	si -	pla	0X00 0X01 0X02 0X03 0X04	0.8 V 0.825 V 0.85 V 0.875 V 0.9 V	0X20 0X21 0X22 0X23 0X24	1.6 V 1.625 V 1.65 V 1.675 V 1.7 V	оьоо1ооо З	
OUT_L2	[5:0]	RW	0X05 0X06 0X07 0X08 0X09 0X0A	0.925 V 0.95 V 0.975 V 1 V 1.025 V 1.05 V	0X25 0X26 0X27 0X28 0X29 0X29	1.725 V 1.75 V 1.775 V 1.8 V 1.825 V 1.85 V	0b010000	
OUT_L6			0X0A 0X0B 0X0C 0X0D 0X0E 0X0F	1.03 V 1.075 V 1.1 V 1.125 V 1.15 V 1.175 V	0X2A 0X2B 0X2C 0X2D 0X2E 0X2F	1.875 V 1.9 V 1.925 V 1.95 V 1.975 V	06001000	

SAMSUNG ELECTRONICS

Name	Bit	Туре		Reset Value			
			0X10	1.2 V	0X30	2 V	
			0X11	1.225 V	0X31	2.025 V	
OUT_L7			0X12	1.25 V	0X32	2.05 V	0b001000
			0X13	1.275 V	0X33	2.075 V	
			0X14	1.3 V	0X34	2.1 V	
	-		0X15	1.325 V	0X35	2.125 V	
			0X16	1.35 V	0X36	2.15 V	
			0X17	1.375 V	0X37	2.175 V	
OUT_L8			0X18	1.4 V	0X38	2.2 V	0b001000
			0X19	1.425 V	0X39	2.225 V	
			0X1A	1.45 V	0X3A	2.25 V	
			0X1B	1.475 V	0X3B	2.275 V	
			0X1C	1.5 V	0X3C	2.3 V	
OUT_L15			0X1D	1.525 V	0X3D	2.325 V	0b001000
			0X1E	1.55 V	0X3E	2.35 V	
			0X1F	1.575 V	0X3F	2.375 V	

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

5.1.2.43 P-type LDO_CTRL

- LDO3: Address = 0x61, Reset Value = 0xD4 •
- LDO4: Address = 0x62, Reset Value = 0xD4
- LDO5: Address = 0x63, Reset Value = 0xD4
- LDO9: Address = 0x67, Reset Value = 0x2C
- LDO10: Address = 0x68, Reset Value = 0xD4 •
- LDO11: Address = 0x69, Reset Value = 0xD4 •
- LDO12: Address = 0x6A, Reset Value = 0xEC
- LDO13: Address = 0x6B, Reset Value = 0xD4 •
- LDO14: Address = 0x6C, Reset Value = 0xD4
- LDO16: Address = 0x6E, Reset Value = 0xD4 •
- LDO17: Address = 0x6F, Reset Value = 0xE8
- LDO18: Address = 0x70, Reset Value = 0x28
- LDO19: Address = 0x71, Reset Value = 0x2C
- LDO20: Address = 0x72, Reset Value = 0x2C •
- LDO21: Address = 0x73, Reset Value = 0x2C
- LDO22: Address = 0x74, Reset Value = 0x32 •
- LDO23: Address = 0x75, Reset Value = 0x28 •
- LDO24: Address = 0x76, Reset Value = .
- LDO25: Address = 0x77, Reset Value =
- LDO26: Address = 0x78, Reset Value =
- LDO27: Address = 0x79, Reset Value =
- LDO28: Address = 0x7A, Reset Value =

	Description	Pasa
= 0x14		
= 0x14		
= 0x14	at 14:14,2011.12.13	
= 0x08		
= 0x2C		

Name	Bit	Туре	Description	Reset Value
LDO_EN	[7:6]	RW	LDO enable control: LDO5, LDO9, LDO10, LDO11, LDO12, LDO13, LDO14, LDO16, LDO17, LDO19, LDO20, LDO21, LDO22, LDO24, LDO25, LDO26, LDO27, LDO28, ▶00 = Output off (regardless of PWREN) ▶01 = Output on/off controlled by PWREN PWREN = 1: Output is on in normal mode. PWREN = 0: Output is off ▶10 = Output is on, and its mode changed by PWREN PWREN = 1: Normal mode PWREN = 0: Low-power mode ▶11 = Output is on in Normal mode (regardless of PWREN)	0b00: LDO9, LDO19, LDO20, LDO21, LDO22, LDO24, LDO25, LDO26, LDO27, LDO28 0b11: LDO5, LDO10,

SAMSUNG ELECTRONICS

Name	Bit	Туре	Description	Reset Value
			LDQ enable control: LDQ4_18_LDQ23	LDO11, LDO12, LDO13, LDO14, LDO16, LDO17
	si - p	S	LDO enable control: LDO4, 18, LDO23 ► 00 = Output on/off controlled by LDO#EN (regardless of PWREN) (# = 4 or 18 or 23) LDO#EN= 0: Output off LDO#EN= 1: Normal mode ► 01 = Output on/off controlled by PWREN and LDO#EN. PWREN and LDO#EN= 00: Output off 01: Output on in Normal mode 10: Output on in Normal mode 11: Output on in Normal mode (When LDO#EN is tied to PWREN, PWREN can turn off and on LDO output alternatively with its low and high state respectively.) ► 10 = Output is on, and its mode changed by PWREN and LDO#EN. PWREN and LDO#EN= 00: Output on in Low-power mode 01: Output on in Normal mode 11: Output is no in Normal mode alternatively with its low and high state respectively.) ► 11 = Output is on in Normal mode (regardless of PWREN and LDO#EN)	0b11: LDO4 0b00: LDO18, LDO23
			 LDO enable control (Special Case): LDO3 00 = Output off is not available (always on) 01 = Output on/off controlled by PWREN PWREN = 1: Output is on in normal mode. PWREN = 0: Output is off 10 = Output is on, and its mode changed by PWREN PWREN = 1: Normal mode PWREN = 0: Low-power mode 11 = Output is on in Normal mode (regardless of PWREN) 	0b11

SAMSUNG ELECTRONICS

Name	Bit	Туре		Descrip	tion		Reset Value
OUT_L3				1		ſ	0b010100
	-		0X00	0.80 V	0X20	2.40 V	
OUT_L4			0X01	0.85 V	0X21	2.45 V	0b010100
OUT_L5			0X02	0.90 V	0X22	2.50 V	0b010100
	-		0X03	0.95 V	0X23	2.55 V	
OUT_L9			0X04	1.00 V	0X24	2.60 V	0b101100
OUT_L10			0X05	1.05 V	0X25	2.65 V	0b010100
001_010	_		0X06	1.10 V	0X26	2.70 V	
OUT_L11			0X07	1.15 V	0X27	2.75 V	0b010100
	-		0X08	1.20 V	0X28	2.80 V	01404400
OUT_L12	_		0X09	1.25 V	0X29	2.85 V	0b101100
OUT_L13			0X0A	1.30 V	0X2A	2.90 V	0b010100
			0X0B	1.35 V	0X2B	2.95 V	
OUT_L14			0X0C	1.40 V	0X2C	3.00 V	0b010100
OUT_L16			0X0D	1.45 V	0X2D	3.05 V	0b010100
			0X0E	1.50 V	0X2E	3.10 V	
OUT_L17	[5:0]	RW	0X0F	1.55 V	0X2F	3.15 V	0b101000
OUT_L18	[5:0]	R.VV	0X10	1.60 V	0 X30	3.20 V	0b101000
	-		0X11	1.65 V	0X31	3.25 V	
OUT_L19	_		0X12	1.70 V	0X32	3.30 V	0b101100
OUT_L20	si - p	laza	0X13	CU 1.75 V 1 4	-0X33	3.35 V	0b101100
	_		0X14	1.80 V	0X34	3.40 V	
OUT_L21			0X15	1.85 V	0X35	3.45 V	0b101100
OUT_L22			0X16	1.90 V	0X36	3.50 V	0b110010
001_L22	_		0X17	1.95 V	0X37	3.55 V	00110010
OUT_L23			0X18	2.00 V	0X38	3.60 V	0b101000
	-		0X19	2.05 V	0X39	3.65 V	01404400
OUT_L24	4		0X1A	2.10 V	0X3A	3.70 V	0b101100
OUT_L25			0X1B	2.15 V	0X3B	3.75 V	0b001000
	-		0X1C	2.20 V	0X3C	3.80 V	
OUT_L26			0X1D	2.25 V	0X3D	3.85 V	0b010100
OUT_L27			0X1E	2.30 V	0X3E	3.90 V	0b010100
	-		0X1F	2.35 V	0X3F	3.95 V	
OUT_L28							0b010100

SAMSUNG ELECTRONICS

5.1.2.44 PWRONSRC

Address = 0xE0, Reset Value = N/A

Name	Bit	Туре	Description	Reset Value
RSVD	[7]	R	Reserved	0b0
SMPL	[6]	R	1: Indicates power on by 'SMPL event'	N/A
ALARM2	[5]	R	1: Indicates power on by 'ALARM2 event'	N/A
ALARM1	[4]	R	1: Indicates power on by 'ALARM1 event'	N/A
MRST	[3]	R	1: Indicates power on by 'MRST event'	N/A
ACOKB	[2]	R	1: Indicates power on by 'ACOKB' event'	N/A
JIGON	[1]	R	1: Indicates power on by 'JIGON event'	N/A
PWRON	[0]	R	1: Indicates power on by 'PWRON key event'	N/A

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

5.2 RTC

5.2.1 Register Map Summary

Register	Address	Description	Reset Value
SEC_TK	0x00	Current Seconds Set Register	0x00
MIN_TK	0x01	Current Minutes Set Register	0x00
HR_TK	0x02	Current Hours Set Register	0x00
WD_TK	0x03	Current Weeks Set Register	0x01
DATE_TK	0x04	Current Date Set Register	0x01
MON_TK	0x05	Current Month Set Register	0x01
YEAR_TK	0x06	Current Year Set Register	0x00
CENT_TK (BCD)	0x07	Current Century Set Register	0x00
SEC_Alarm0	0x08	Alarm0 Seconds Set Register	0x00
MIN_Alarm0	0X09	Alarm0 Minutes Set Register	0x00
HR_Alarm0	0x0A	Alarm0 Hours Set Register	0x00
WD_Alarm0	0x0B	Alarm0 Weeks Set Register	0x00
DATE_Alarm0	0x0C	Alarm0 Date Set Register	0x01
MON_Alarm0	0x0D	Alarm0 Month Set Register	0x00
YR_Alarm0	0x0E	Alarm0 Year Set Register	0x00
CENT_Alarm0 (BCD)	0x0F	Alarm0 Century Set Register	0x00
SEC_Alarm1	0x10	Alarm1 Seconds Set Register	0x00
MIN_Alarm151 - plaza	0x11	Alarm1 Minutes Set Register	0x00
HR_Alarm1	0x12	Alarm1 Hours Set Register	0x00
WD_Alarm1	0x13	Alarm1 Weeks Set Register	0x00
DATE_Alarm1	0x14	Alarm1 Date Set Register	0x01
MON_Alarm1	0x15	Alarm1 Month Set Register	0x00
YR_Alarm1	0x16	Alarm1 Year Set Register	0x00
CENT_Alarm1 (BCD)	0x17	Alarm1 Century Set Register	0x00
RTC_CTRLM	0x18	RTC Control Mask Register	0x03
RTC_CTRL	0x19	RTC Control Register	0x00
TEST_STATUS	0x1A	Status Register	NA
SMPL_WTSR	0x1B	SMPL WTSR Register	0x00
TEST_CON	0x1C	Update Register	0x00

SAMSUNG ELECTRONICS

5.2.2 Bit Map Summary

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x00	RSVD				SEC					
0x01	RSVD		MIN							
0x02	RSVD	AM/PM								
0x03	RSVD	SAT	FRI	THU	WED	TUE	MON	SUN		
0x04	RSVD	RSVD		1	DA	TE				
0x05	RSVD	RSVD	RSVD			MONTH				
0x06		I		YE	AR					
0x07	100	0YEAR : BO	CD format or	ly	1	00YEAR : BO	CD format on	ly		
0x08	ALM0_EN				ALM0_SEC	;				
0x09	ALM0_EN				ALM0_MIN					
0x0A	ALM0_EN	AM/PM			ALM0_	HOUR				
0x0B	ALM0_EN	SAT	FRI	THU	WED	TUE	MON	SUN		
0x0C	ALM0_EN	RSVD			ALM0	DATE				
0x0D	ALM0_EN	RSVD	RSVD		A	LM0_MONT	Н			
0x0E	ALM0_EN				ALM0_YEAR	२				
0x0F		ALM0_10	00YEAR			ALM0_1	00YEAR			
0x10	ALM1_EN				ALM1_SEC					
0x11	ALM1_EN				ALM1_MIN					
0x12	ALM1_EN	AM/PM	eff ci	i at 1	ALM1_	HOUR	2 13			
0x13	ALM1_EN	SAT	FRI	THU	WED	TUE	MON	SUN		
0x14	ALM1_EN	RSVD			ALM1	DATE				
0x15	ALM1_EN	RSVD	RSVD		Ą	LM1_MONT	Н			
0x16	ALM1_EN				ALM1_YEA	२				
0x17		ALM1_10	00YEAR			ALM1_1	00YEAR			
0x18	1 SECM	ALM CENTM	RSVD	RSVD	RSVD	RSVD	MODE24 _12nM	BCDM		
0x19	1 SEC	ALM CENT	RSVD	RSVD	RSVD	RSVD	MODE24 _12n	BCD		
0x1A	RSVD	LEAP_ OK	RSVD	RSVD	RSVD	ALARM1	ALARM0	UDF		
0x1B	SMPL	WTSR	WTSR_H	I_TIMER	SMPL_	TIMER	WTSR_	TIMER		
0x1C	UDR.	_T	SEL_ OSC	TEST_ OSC	TIMEN	SEC_ FREEZE	RSVD	UDR		

SAMSUNG ELECTRONICS

5.2.2.1 SEC_TK

• Address = 0x00, Reset Value = 0x00

Bit	Туре		Description					
[7]	RW	Reserved					0b0	
[6:0]	RW	set to 3	000_0000 011_1011 g value is bigge Bh.	0h 3Bh er than 3	000_0000 101_1001 3Bh in BIN mod	0h 59h e, it is	0Ь000000	
	[7]	[7] RW	[7] RW Reserved [6:0] RW 59 sec • If settin set to 3	[7] RW Reserved [6:0] RW - BIN Formation 0 sec 000_0000 59 sec 011_1011 • If setting value is bigger set to 3Bh. • BCD/BIN mode selection	[7] RW Reserved [6:0] RW - BIN Format 0 sec 000_0000 0h 59 sec 011_1011 3Bh • If setting value is bigger than 3 set to 3Bh. • BCD/BIN mode selection is reserved	[7] RW Reserved [6:0] RW - BIN Format BCD Form 0 sec 000_0000 0h 000_0000 59 sec 011_1011 3Bh 101_1001 • If setting value is bigger than 3Bh in BIN mod set to 3Bh. • BCD/BIN mode selection is referred to 0x18 at a set to 0x18	[7] RW Reserved [6:0] RW - BIN Format BCD Format 0 sec 000_0000 0h 000_0000 0h 59 sec 011_1011 3Bh 101_1001 59h • If setting value is bigger than 3Bh in BIN mode, it is set to 3Bh. • BCD/BIN mode selection is referred to 0x18 and	

5.2.2.2 MIN_TK

• Address = 0x01, Reset Value = 0x00

Name	Bit	Туре		Description Rese					
RSVD	[7]	RW	Reserved	Reserved					0b0
si -	plaz	D / J a / J	- 0 min	B N Form 000_0000	at Oh 4	BCD Form 000_0000	at 0h		3
MIN	[6:0]	RW	set to 3	59 min011_10113Bh101_100159hIf setting vales is bigger than 3Bh in BIN mode, it is set to 3Bh.BCD/BIN mode selection is referred to 0x18 and					06000000

SAMSUNG ELECTRONICS

5.2.2.3 HR_TK

• Address = 0x02, Reset Value = 0x00

Name	Bit	Туре		Description					
RSVD	[7]	RW	Reserved					0b0	
AM/PM	[6]	RW	Select AN	1/PM				0b0	
HOUR	[5:0}	RW	set to 1		0h 0Ch 0h 17h er than 7		0h 12h 0h 23h le, it is	0600000	
HOUR	[5:0}	RW	Hour If setting set to 1 BCD/B	01_0111 og vales is bigge	17h er than 7 2/24 hou	10_0011 17h in BIN mod	le, it	3h is	

5.2.2.4 WD_TK

• Address = 0x03, Reset Value = 0x01

Name	lame Bit Type Description					
RSVD S -	0 [7] Z	RW	Reserved 14:14.2011.12.1	3 0b0		
SAT	[6]	RW		0b0		
FRI	[5]	RW		0b0		
THU	[4]	RW		0b0		
WED	[3]	RW	Multi-setting is not supported.	0b0		
TUE	[2]	RW		0b0		
MON	[1]	RW		0b0		
SUN	[0]	RW		0b1		

SAMSUNG ELECTRONICS

5.2.2.5 DATE_TK

• Address = 0x04, Reset Value = 0x01

Name	Bit	Туре		Description					
RSVD	[7]	RW	Reserved					0b0	
RSVD	[6]	RW	Reserved					0b0	
DATE	[5:0]	RW	set to 1	BIN Form 00_0000 01_1110 Ig vales is bigge Eh. IN mode selecti	0h 1Eh er than 7		0h 31h le, it is	0b000001	

5.2.2.6 MON_TK

• Address = 0x05, Reset Value = 0x01

Name	Bit	Туре		Des	criptio	n		Reset Value
RSVD	[7]	RW	Reserved					0b0
RSVD	[6]	RW	Reserved	Reserved				
RSVD S -	0 [5] Z	RW	Reserved	Reserved at 14:14,2011.12.1				3 0b0
MONTH	[5:0]	RW	set to 0	BIN Form 0_0000 0_1100 g vales is bigge Ch. IN mode selecti	00h 0Ch er than (01h 12h le, it is	0600001

SAMSUNG ELECTRONICS

SAMSUNG

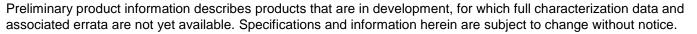
5.2.2.7 YEAR_TK

• Address = 0x06, Reset Value = 0x00

Name	Bit	Туре		De	scriptio	n		Reset Value																								
			_	BIN Form	at	BCD Form	at																									
			1	0000_0000	00h	00 0_0000	00h																									
YEAR	[7:0] RW	[7:0] RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	99 (BIN) /79 (BCD) 0110_ 011		63h	X111_1001	79h	0b00000000
			Maximum mode.	setting value is 6	63h in B	IN mode and 79h	in BCD																									

5.2.2.8 CENT_TK (BC)

• Address = 0x07, Reset Value = 0x00


Name	Bit	Туре			Descripti	on		Reset Value
1000YEAR	[7:4]	RW		_				
				BIN F	ormat	BCD Form	at	
	[2:0]		1	X	Х	0000_0000	0h	050000
100YEAR	[3:0]	RW	9900	Х	X	1001_1001	99h	0b0000
	i bl	070	CENT is of	only valid i	n BCD mo	de. 2011	10	12
	[3.0] bi - pl	aza /		X only valid i		de	99h	

5.2.2.9 SEC_Alarm0

• Address = 0x08, Reset Value = 0x00

Name	Bit	Туре		Desc	ription			Reset Value
ALM0_EN	[7]	RW	SEC ALARM enable					0b0
			_	- BIN Format BCD Format				
ALM0_SEC	[6:0]	RW	0 sec	000_0000	0h	000_0000	0h	0b000000
			59 sec	011_1011	3Bh	101_1001	59h	
				•	•		·	

SAMSUNG ELECTRONICS

5.2.2.10 MIN_Ararm0

• Address = 0x09, Reset Value = 0x00

Name	Bit	Туре		Desc	cription			Reset Value
ALM0_EN	[7]	RW	MIN ALARM enable					0b0
			_	BIN Form	at	BCD Form	nat	
ALM0_MIN	[6:0]	RW	0 min	000_0000	0h	000_0000	0h	0b000000
			59 min	011_1011	3Bh	101_1001	59h	
							<u> </u>	

5.2.2.11 HR_Alarm0

• Address = 0x0A, Reset Value = 0x00

Name	Bit	Туре		Des	scriptio	n		Reset Value	
ALM0_EN	[7]	RW	HOUR AL	ARM enable		0b0			
AM/PM	[6]	RW	Select AM	I/PM		0b0			
			Mode	Mode BIN Format BCD Format					
			12	00_0000	00h	00_0000	00h		
ALM0_HOUR	[5:0]	RW	Hour	00_1100	0Ch	01_0010	12h	0b00000	
		/	24	00_000	00h	00_0000	00h		
SI	- pla	za / 、	Hour	01_0111	17h	10_0011	23h	3	
					·				

5.2.2.12 WD_Alarm0

• Address = 0x0B, Reset Value = 0x00

Name	Bit	Туре	Description	Reset Value
ALM0_EN	[7]	RW	WEEK ALARM enable	0b0
SAT	[6]	RW	100_0000 represents Saturday	0b0
FRI	[5]	RW	010_0000 represents Friday	0b0
THU	[4]	RW	001_0000 represents Thursday	0b0
WED	[3]	RW	000_1000 represents Wednesday	0b0
TUE	[2]	RW	000_0100 represents Tuesday	0b0
MON	[1]	RW	000_0010 represents Monday	0b0
SUN	[0]	RW	000_0001 represents Sunday	0b0

SAMSUNG ELECTRONICS

5.2.2.13 DATE_Alarm0

• Address = 0x0C, Reset Value = 0x01

Name	Bit	Туре		Description					
ALM0_EN	[7]	RW	DATE ALAF	DATE ALARM enable					
RSVD	[6]	RW	Reserved	Reserved					
				BIN Form	1	BCD Form			
ALM0_DATE	[5:0]	RW	1 31	00_0000	0h 1Eh	00_0000	0h 31h	0b000001	
							11		

5.2.2.14 MON_Alarm0

• Address = 0x0D, Reset Value = 0x00

Name	Bit	Туре		Description			Reset Value	
ALM0_EN	[7]	RW	MONTH ALARM ena	able			0b0	
RSVD	[6]	RW	Reserved	Reserved				
RSVD	[5]	RW	Reserved				0b0	
almo_month Si	[4:0] - pla:	RW Za /	- BIN 1 0_00 12 0_11		BCD Form 00_0001 01_0010	nat 01h 12h	оьооооо З	

5.2.2.15 YR_Alarm0

• Address = 0x0E, Reset Value = 0x00

Name	Bit	Туре		Des	criptio	on		Reset Value
ALM0_EN	[7]	RW	YEAR ALAR	YEAR ALARM enable				
			_	BIN Form	nat	BCD Form	at	
			1	0000_0000	0h	0000_0000	0h	
ALM0_YEAR	[6:0]	RW	99 (BIN) /79 (BCD)	0110_0011	63h	X111_1001	79h	06000000

SAMSUNG ELECTRONICS

120

5.2.2.16 CENT_Alarm0

• Address = 0x0F, Reset Value = 0x00

Name	Bit	Туре		Des	criptio	on			Reset Value	
ALM0_	[7:4]	RW								
1000YEAR	[7.1]		_	BIN Forma	BIN Format		at		0b0000	
			1	Х	Х	0000_0000	0h			
				9900	Х	Х	1001_1001	99h		
ALM0_ 100YEAR	[3:0]	RW	CENT is] is set high, CE only valid in BC omparison is act	D mod	e.	s set to		0b0000	

5.2.2.17 SEC_Alarm1

• Address = 0x10, Reset Value = 0x00

Name	Bit	Туре		Des	criptio	n		Reset Value
ALM1_EN	[7]	RW	SEC ALARI	SEC ALARM enable				
ALM1_SEC	[6:0]	RW	- 0 sec 59 sec	BIN Form 000_0000 011_1011	at Oh 3Bh	BCD Form 000_0000 101_1001	oh Oh 59h	06000000

5.2.2.18 MIN_Alarm1

• Address = 0x11, Reset Value = 0x00

Name	Bit	Туре		Description				
ALM1_EN	[7]	RW	MIN ALARM enable					0b0
		RW						
			– BIN Format BCD Format		at			
ALM1_MIN	[6:0]		0 min	000_0000	0h	000_0000	0h	0b000000
			59 min	011_1011	3Bh	101_1001	59h	

SAMSUNG ELECTRONICS

5.2.2.19 HR_Alarm1

• Address = 0x12, Reset Value = 0x00

Name	Bit	Туре		Description				
ALM1_EN	[7]	RW	HOUR AL	ARM enable	0b0			
AM/PM	[6]	RW	Select AM	Select AM/PM.				
			Mode	lode BIN Format BCD Format		nat		
			12	00_0000	00h	00_0000	00h	
ALM1_HOUR	[5:0]	RW	Hour	00_1100	0Ch	01_0010	11h	0Ь000000
			24	00_0000	00h	00_0000	00h	
			Hour	01_0111	17h	10_0011	23h	
							<u> </u>	

5.2.2.20 WD_Alarm1

• Address = 0x13, Reset Value = 0x00

Name	Bit	Туре	Description	Reset Value
ALM1_EN	[7]	RW	WEEK ALARM enable	0b0
SAT	[6]	RW	100_0000 represents Saturday	0b0
FRI	[5]	RW	010_0000 represents Friday	0b0
THU	[4]	RW	001_0000 represents Thursday	0b0
wed SI-p	12[3] a	/ _{RW} e	000_1000 represents Wednesday	් 0b0
TUE	[2]	RW	000_0100 represents Tuesday	0b0
MON	[1]	RW	000_0010 represents Monday	0b0
SUN	[0]	RW	000_0001 represents Sunday	0b0

5.2.2.21 DATE_Alarm1

• Address = 0x14, Reset Value = 0x01

Name	Bit	Туре		Description				
ALM1_EN	[7]	RW	DATE ALA	DATE ALARM enable				
RSVD	[6]	RW	Reserved	Reserved				
		RW	_	BIN Form	at	BCD Form	nat	
ALM1_DATE	[5:0]		1	00_0000	0h	00_0000	0h	0b000001
			31	01_1110	1Eh	11_0001	31h	

SAMSUNG ELECTRONICS

5.2.2.22 MON_Alarm1

• Address = 0x15, Reset Value = 0x00

Name	Bit	Туре		Description				
ALM1_EN	[7]	RW	MONTH AL	MONTH ALARM enable				
RSVD	[6]	RW	Reserved	Reserved				
RSVD	[5]	RW	Reserved	Reserved				
	[4:0]] RW						
			-	BIN Form	nat	BCD Forn	nat	
ALM1_MONTH			1	0_000	0h	00_0000	0h	0b00000
			12	0_1100	0Ch	01_0010	12h	
				•	<u> </u>		<u> </u>	

5.2.2.23 YR_Alarm1

• Address = 0x16, Reset Value = 0x00

Name	Bit	Туре		Description				
ALM1_EN	[7]	RW	YEAR ALAR	YEAR ALARM enable				
alm1_year Si -	[6:0]	RW	– 1 99 (BIN) /79 (BCD)	BIN Form 0000_0000 0110_0011	at Oh 63h	BCD Form 0000_0000 X111_1001	oh 79h	оьоооооо

5.2.2.24 CENT_Alarm1

• Address = 0x17, Reset Value = 0x00

Name	Bit	Туре		Description				
ALM1_1000YEAR	[7:4]	RW						0b0000
			_	BIN Format		BCD Format		
			1	Х	Х	0000_0000	0h	
			9900	Х	Х	1001_1001	99h	
ALM1_100YEAR	[3:0]	RW	CENT is	is set high only valid ir omparison is	et to	060000		

SAMSUNG ELECTRONICS

123

5.2.2.25 RTL_CTRLM

• Address = 0x18, Reset Value = 0x03

Name	Bit	Туре	Description	Reset Value
1SECM	[7]	RW	Monitor selection. 0 = When read, ALARM0 status 1 = When read, 1SEC period	0b0
ALMCENTM	[6]	RW	ALMCENT 0 = Not masked 1 = Masked	0b0
RSVD	[5]	RW	Reserved	0b0
RSVD	[4]	RW	Reserved	0b0
RSVD	[3]	RW	Reserved	0b0
RSVD	[2]	RW	Reserved	0b0
MODE24_12nM	[1]	RW	Mode24_12n 0 = Not masked 1 = Masked	0b1
BCDM	[0]	RW	BCD 0 = Not masked 1 = Masked	0b1

5.2.2.26 RTL_CTRL

Address = 0x19, Reset Value = 0x00 ff_CUI at 14:14,2011.12.13

Name	Bit	Туре	Description	Reset Value			
			Monitor selection.				
1SEC	[7]	RW	0 = When read, ALARM1 status 0b				
			1 = When read, 1SEC period				
ALMCENT	[6]	RW	0 = Only compare YEAR	050			
	[6]		1 = Compare both CENT and YEAR	0b0			
RSVD	[5]	RW	Reserved	0b0			
RSVD	[4]	RW	Reserved	0b0			
RSVD	[3]	RW	Reserved	0b0			
RSVD	[2]	RW	Reserved	0b0			
MODE24 12n	[4]	RW	0 = 12 hour mode	0b0			
WODE24_1211	[1]	R V V	1 = 24 hour mode	000			
BCD	[0]	RW	0 = Binary mode	050			
	[0]		1 = BCD mode	0b0			

SAMSUNG ELECTRONICS

5.2.2.27 TEST_STATUS

Address = 0x1A, Reset Value = NA •

Name	Bit	Туре	Description	Reset Value
RSVD	[7]	R	Reserved	N/A
LEAP_OK	[6]	R	Indicates leap month. 0 = Non-February flag 1 = February flag	N/A
RSVD	[5]	R	Reserved	N/A
RSVD	[4]	R	Reserved	N/A
RSVD	[3]	R	Reserved	N/A
ALARM1	[2]	R	0 = ALARM1 interrupt flag is 0 1 = ALARM1 interrupt flag is 1	N/A
ALARMO	[1]	R	0 = ALARM0 interrupt flag is 0 1 = ALARM0 interrupt flag is 1	N/A
UDF	[0]	R	UDR status register 0 = Address DATA was not updated 1 = Address DATA	N/A

5.2.2.28 SMPL_WTSR

5.2	.2.28 SMPL_WTSR			
•	Address = 0x1B, Reset Value =	0x00		

Name	Bit	Туре	Description	Reset Value
SMPL	[7]	RW	0 = Disable SMPL interrupt 1 = Enable SMPL interrupt	0b0
WTSR	[6]	RW	0 = Disable WTSR interrupt 1 = Enable WTSR interrupt	0b0
WTSR_H_TIMER	[5:4]	RW	WTSR_RESETB threshold control registers. 00 = 0.25 s (Default) 01 = 0.50 s 10 = 0.75 s 11 = 1.00 s	0600
SMPL_TIMER	[3:2]	RW	SMPL threshold control registers. 00 = 0.5 s (Default) 01 = 1.0 s 10 = 1.5 s 11 = 2.0 s	0600
WSTR_TIMER	[1:0]	RW	WTSR threshold control registers. 00, 01, 10 = 62.5 ms 11 = 78.12 ms	0b11

SAMSUNG ELECTRONICS

5.2.2.29 TEST_CON

•	Address = 0x1C, Reset Value =	0x00
---	-------------------------------	------

Name	Bit	Туре	Description	Reset Value
UDR_T	[7:6]	RW	Determines UDR (Update Register) time. 00 = 7.32 ms (Default) 01 = 1.83 ms 10 = 3.66 ms 11 = 0.45 ms	0600
SEL_OSC	[5]	RW	0 = SEC counter clock inversion off 1 = SEC counter clock inversion on	0b0
TEST_OSC	[4]	RW	0 = 1 Hz for SEC counter 1 = 16 Hz for SEC counter	0b0
TIMEN	[3]	RW	Enable write current time register	0b0
SEC_FREEZE	[2]	RW	This bit freezes the RTC. 0 = Normal Timer 1 = Clock Disable for SEC Counter	0b0
RESERVED	[1]	RW	Reserved	0b0
UDR	[0]	RW	Enable flag of update. UDR is auto cleared to after the registers data have been transferred. 0 = Address & Data Hold 1 = Address & Data Update Enable	0b0

si - plaza / Jeff_cui at 14:14,2011.12.13

SAMSUNG ELECTRONICS

6 Application Circuit

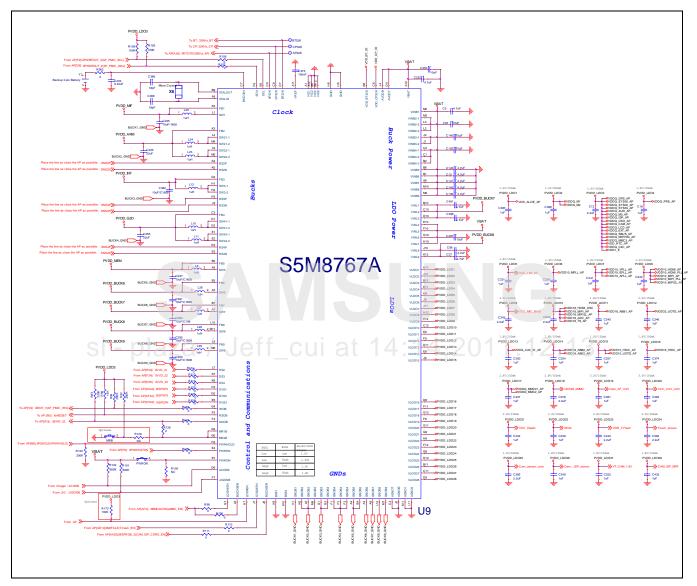


Figure 28 Typical Application Circuit

SAMSUNG ELECTRONICS

127

6.1 Package Dimension

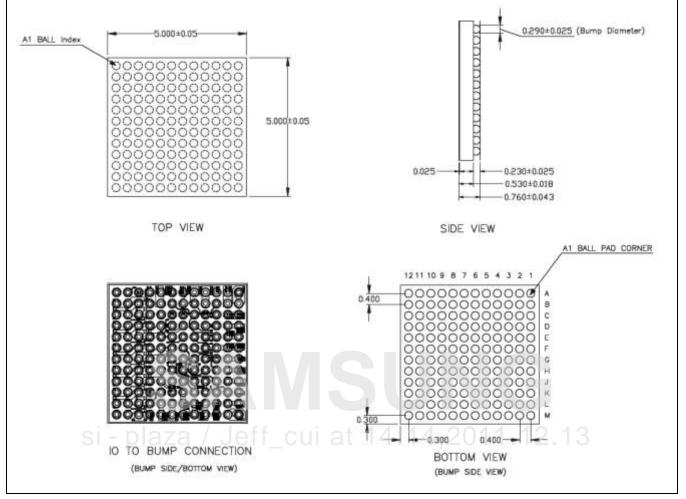


Figure 29 Package Dimension

SAMSUNG ELECTRONICS

128

